
AI102-MachineLearning / 1. Introduction to Numpy.ipynb

zekelabs / AI102-MachineLearning

Join GitHub today
GitHub is home to over 28 million developers working together to host

and review code, manage projects, and build software together.

Dismiss

Sign up

 master Branch: Find file Copy path

1 contributor

e6c7288 21 days ago crazymuse Editing Awantiks content

1057 lines (1056 sloc) 30.8 KB

https://github.com/zekelabs/AI102-MachineLearning
https://github.com/zekelabs
https://github.com/zekelabs/AI102-MachineLearning
https://github.com/join?source=prompt-blob-show
https://github.com/zekelabs/AI102-MachineLearning/find/master
https://github.com/zekelabs/AI102-MachineLearning/commit/e6c7288633c647623e8a734d83b64ce8fede8f9a
https://github.com/crazymuse
https://github.com/crazymuse
https://github.com/zekelabs/AI102-MachineLearning/commit/e6c7288633c647623e8a734d83b64ce8fede8f9a

1. Introduction to Numpy
Numpy is a Library in python that specializes in dealing with multidimensional Arrays. The cool features of Numpy are

Automatic Checking : Numpy ndArrays automatically check the consistancy of data. For instance, it is not possible to have 1st row with 2
elements and 2nd row with 3 elements
Contiguous Storage : Unlike Python Lists, Numpy stores the data in contiguous Memory Locations, leading to lesser Space
Faster Vector Arithmatics : Because of contiguous storage, the operations are performed faster as compared to default Python
Execution for Lists

In [1]: # Importing Numpy
import numpy as np

1.1 Initialization of 1D array in Python
A numpy array comes with 2 important state variables. Just like Python, it automatically detects dtype (if not mentioned)

dtype
shape

1.1.1 Initialization from python List

numpy.array(list)

In [12]: # Initializing from Python List
v = np.array([1,4,9,3,2])
print ('1D array in numpy is %s\n'%v)
print ('dtype of the numpy array is %s\n'%str(v.dtype))
print ('shape of the numpy array is %s\n'%v.shape)

1D array in numpy is [1 4 9 3 2]

dtype of the numpy array is int32

shape of the numpy array is 5

1.1.2 Initialization via arange

numpy.arange([start,]stop, [step,] dtype=None)

In [22]: v1 = np.arange(5)
print ('Creating a numpy array via arange (stop=5) : %s\n'%v1)
v2 = np.arange(2,5)
print ('Creating a numpy array via arange (start=2,stop=5) : %s\n'%v2)
v3 = np.arange(0,-10,-2)
print ('Creating a numpy array via arange (start=0,stop=-10,step=-2) : %s\n'%v3)

1.2. Initialization of 2D array in Python
When we talk about 2D array, it is important to note that Numpy stores Matrix is Row Major Format. Row major format means that the the
complete row will be stored first and then the next row will be stored and so on. You can choose to store a matrix in colum major format by
mentioning order='F' on ndarray creation, which means Column Major Format or Fortran Style Format.

Interpretation of row and column in Numpy

1.2.1 Initialization from List of List

numpy.array (object, dtype=None)

Here the matrix that we have taken is

In [31]: pymat = [[1,2,3],[4,5,6]]
npmat = np array(pymat)

Creating a numpy array via arange (stop=5) : [0 1 2 3 4]

Creating a numpy array via arange (start=2,stop=5) : [2 3 4]

Creating a numpy array via arange (start=0,stop=-10,step=-2) : [0 -2 -4 -6 -8]

npmat = np.array(pymat)
print ('numpy matrix is \n%s\n'%npmat)
print ('Flattened version of numpy matrix is %s\n'%npmat.flatten())
By flatten the matrix becomes row major 1D vector (This is the way in which a matrix is stored in memor
y).

1.2.2 Initialization with zero/ones

numpy.zeros(shape, dtype=float)
numpy.ones(shape, dtype=float)

In [5]: mat_zeros = np.zeros(shape=(3,5))
print ('Zeros Matris of shape %s is \n%s\n'%(mat_zeros.shape,mat_zeros))
mat_ones = np.ones(shape=(2,3))
print ('Ones Matris of shape %s is \n%s\n'%(mat_ones.shape,mat_ones))

1.2.3 Initialization with Random Values

1.2.3.1 numpy.random.random(size=None,)
1.2.3.2 numpy.random.randint(low, high, size=None, dtype='I') : The value of matrix lies between low and high-1
1.2.3.3 numpy.random.randn()

In [19]: #Using numpy.random.random

numpy matrix is
[[1 2 3]
 [4 5 6]]

Flattened version of numpy matrix is [1 2 3 4 5 6]

Zeros Matris of shape (3, 5) is
[[0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]]

Ones Matris of shape (2, 3) is
[[1. 1. 1.]
 [1. 1. 1.]]

mat1 = np.random.random(size=(3,4))
print ('matrix generated from numpy.random.random is \n%s\n'%mat1)
mat2 = np.random.randint(low=0,high=2,size=(3,4))
print ('matrix generated from numpy.random.random is \n%s\n'%mat2)
mat3 = np.random.randn(3,4)
print ('matrix generated from numpy.random.randn is \n%s\n'%mat3)

1.3. Slicing and Indexing in Numpy
Just like python, numpy also has 0 indexing. Let us see some of the commonly used slicing techniques .

Generic Slicing Operation : [start]:[end]:[jump]
Only jump ::2
Only end :5
Start and jump 2::-1
End and Jump :5:2
Start, end and jump 2:7:3

1.3.1 Remove n elements

vec[:-n]

In [29]: vec = np.arange(10)
1 [3]

matrix generated from numpy.random.random is
[[0.40809381 0.92255528 0.26384768 0.18020434]
 [0.78683826 0.51616332 0.20181108 0.44676456]
 [0.40513581 0.41943719 0.14935848 0.49202397]]

matrix generated from numpy.random.random is
[[1 0 1 0]
 [0 1 1 1]
 [0 1 1 0]]

matrix generated from numpy.random.randn is
[[1.23093258 0.06762907 1.32948035 1.27069921]
 [-1.55068329 -0.48071094 0.85203508 -1.90068409]
 [-1.94335643 0.12680395 0.06573786 -0.66923407]]

vec1 = vec[:-3]
print ('Result of removing last 3 elements from range(10) : \n%s\n'%vec1)

1.3.2 Access elements at even indices in a 1D array

vec[::2]

In [87]: vec1 = np.arange(0,20,3)
print ('Original array is %s\n'%vec1)
vec2 = vec1[::2]
print ('Elements at even indices are %s\n'%vec2)

1.3.3 Access elements at indices in reverse order

vec[::-1]

In [88]: vec1 = np.arange(0,20,3)
print ('Original array is %s\n'%vec1)
vec2 = vec1[::-1]
print ('Elements for indices in reverse is %s\n'%vec2)

1.3.4 Access elements present for a range of indices

vec[a:b]

Result of removing last 3 elements from range(10) :
[0 1 2 3 4 5 6]

Original array is [0 3 6 9 12 15 18]

Elements at even indices are [0 6 12 18]

Original array is [0 3 6 9 12 15 18]

Elements for indices in reverse is [18 15 12 9 6 3 0]

In [92]: vec1 = np.arange(0,20,3)
print ('Original array is %s\n'%vec1)
vec2 = vec1[2:5]
print ('Elements for indices 2:5 is %s\n'%vec2)

1.3.5 Access a particular set of index given by a list

vec[idxlist]

In [95]: idx=[0,1,5]
vec1 = np.arange(0,20,3)
print ('Original array is %s\n'%vec1)
vec2 = vec1[idx]
print ('Subarray constructed by indices %s is %s\n'%(idx,vec2))

1.3.6 Creating a submatrix

In [109]: mat = np.random.randint(0,6,(3,5))
Create a submatrix with first 2 rows and last 2 columns
submat1 = mat[0:2,-2:]
print ('Original Matrix is \n%s\n'%mat)
print ('Sub Matrix with first 2 rows and last 2 columns is \n%s\n'%submat1)
submat2 = mat[:,3:0:-1]
print ('After flipping the columns of the matrix, it looks : \n%s\n'%submat2)

Original array is [0 3 6 9 12 15 18]

Elements for indices 2:5 is [6 9 12]

Original array is [0 3 6 9 12 15 18]

Subarray constructed by indices [0, 1, 5] is [0 3 15]

Original Matrix is
[[1 2 0 0 2]
 [4 1 5 3 2]
 [2 1 3 5 0]]

1.3.7 Horizontal Matrix splitting

numpy.hsplit(ary, indices_or_sections)

hsplit basically splits a matrix across the horizontal plane based on the indices. Do note that the number of rows always remains constant in each
section after the horizontal splitting.

In [131]: mat = np.random.randint(0,6,(3,7))
sp1,sp2,sp3 = np.hsplit(mat,[4,6])
print ('Original matrix of shape %s, is \n%s\n'%(mat.shape,mat))
print ('First split of shape %s, is \n%s\n'%(sp1.shape,sp1))
print ('Second split of shape %s, is \n%s\n'%(sp2.shape,sp2))
print ('Third split of shape %s, is \n%s\n'%(sp3.shape,sp3))

Sub Matrix with first 2 rows and last 2 columns is
[[0 2]
 [3 2]]

After flipping the columns of the matrix, it looks :
[[0 0 2]
 [3 5 1]
 [5 3 1]]

Original matrix of shape (3, 7), is
[[5 4 1 2 1 5 2]
 [1 5 5 5 0 5 3]
 [2 0 1 5 4 4 4]]

First split of shape (3, 4), is
[[5 4 1 2]
 [1 5 5 5]
 [2 0 1 5]]

Second split of shape (3, 2), is
[[1 5]
 [0 5]
 [4 4]]

Third split of shape (3, 1), is

1.3.8 Vertical Matrix Splitting

numpy.vsplit(ary, indices_or_sections)

vsplit is yet another operation which splits the matrix across the vertical plane based on the 'rowwise split-index array'. The number of columns
always remain constant in each split.

In [134]: mat = np.random.randint(0,6,(3,7))
sp1,sp2 = np.vsplit(mat,[1])
print ('Original matrix of shape %s, is \n%s\n'%(mat.shape,mat))
print ('First split of shape %s, is \n%s\n'%(sp1.shape,sp1))
print ('Second split of shape %s, is \n%s\n'%(sp2.shape,sp2))

Class Assignment for 1.1 to 1.3

1. Create a matrix of size (2,3) with random binary values
2. Find the sum of all 2x2 blocks (overlapping) for a random integer matrix of size (3,5)

f

[[2]
 [3]
 [4]]

Original matrix of shape (3, 7), is
[[5 2 1 1 0 5 5]
 [5 3 0 1 5 2 1]
 [5 5 4 2 2 1 0]]

First split of shape (1, 7), is
[[5 2 1 1 0 5 5]]

Second split of shape (2, 7), is
[[5 3 0 1 5 2 1]
 [5 5 4 2 2 1 0]]

1.4. Understanding - Pass By Reference
Just like python lists, Numpy also exhibits default pass-by-reference behavior

Pass by reference Illustration

In [110]: mat1 = np.random.random((2,3))
pt1 = mat1[0].__array_interface__['data'][0]
print ('Memory Location of mat1[0] is : %s\n'%pt1)
pt2 = mat1[1].__array_interface__['data'][0]
print ('Memory Location of mat1[1] is : %s\n'%pt2)
print ('Difference in Memory Location for 3 elements is : %s bytes\n'%(pt2-pt1))
print ('Memory jump = 8 bytes')

1.4.1 Experiment : Change the value of array by Reference

In [117]: def identity(elem):
 return elem
v = np.array([1,2,3])
v1 = v # Copy by reference
v1[0]=10
print ('Value of v, after v1 is modified is %s\n'%v)
Pass by Function
v = np.array([1,2,3])
v1 = identity(v) # Copy by reference
v1[0]=10
print ('Value of v after func(v) is modified is %s\n'%v)
v = np.array([1,2,3])
v1 = v.copy() # Copy by reference
v1[0]=10
print ('Value of v after v.copy() is modified is %s\n'%v)

Memory Location of mat1[0] is : 2041724279440

Memory Location of mat1[1] is : 2041724279464

Difference in Memory Location for 3 elements is : 24 bytes

Memory jump = 8 bytes

Value of v, after v1 is modified is [10 2 3]

1.4.2 Experiment : Change the value of matrices by Reference

In [136]: mat = np.array([[1,2,3],[4,5,6],[7,8,9]])
print ('Original Matrix is \n%s\n'%mat)

#1 Add 10 to all the even indexes in matrix
mat = np.array([[1,2,3],[4,5,6],[7,8,9]])
mat1 = mat[::2,::2]
mat1+=10
print (' Matrix with 10 added to even indices is \n%s\n'%mat1)
Changes in mat1 are reflected in mat. This happens because the default assignment in numpy is 'pass by r
eference'

Note : mat1+=10 is different from mat1=mat1+10, as a new space is allocated for mat1 in the latter case.

1.5 Broadcast Operation in Numpy
Broadcast Operation is like a razor-sharp knife, to be used with great care. It is a way to broadcast data of lower or same dimension onto another
ndarray. It is similar to map operation in python, scala, hadoop. Broadcast rules are not limited to 2D array. There are extremely specific set of rules
for nd-array broadcasting. You can visit numpy documentation on broadcasting (https://docs.scipy.org/doc/numpy-
1.13.0/user/basics.broadcasting.html) to get the complete picture. However, we will be restricting the discussion to only 2D-matrices.

Value of v after func(v) is modified is [10 2 3]

Value of v after v.copy() is modified is [1 2 3]

Original Matrix is
[[1 2 3]
 [4 5 6]
 [7 8 9]]

 Matrix with 10 added to even indices is
[[11 13]
 [17 19]]

https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html

Visualization of broadcast Operation for Matrix

In [147]: mat = np.random.randint(0,6,(3,5))
print ('mat is \n%s\n'%mat)
v = np.array([10,20,30,40,50])
print ('v is \n%s\n'%v)
print ('mat+1 is \n%s\n'%(mat+1)) # Similar behaviour in case of np.array([1])
print ('mat+v is \n%s\n'%(mat+v))
print ('mat*v is \n%s\n'%(mat*v))
print ('mat+mat is \n%s\n'%(mat+mat))
print ('mat*mat is \n%s\n'%(mat*mat))

mat is
[[1 1 2 1 4]
 [4 2 1 3 5]
 [3 1 1 2 5]]

v is
[10 20 30 40 50]

mat+1 is
[[2 2 3 2 5]
 [5 3 2 4 6]
 [4 2 2 3 6]]

mat+v is
[[11 21 32 41 54]
 [14 22 31 43 55]
 [13 21 31 42 55]]

mat*v is
[[10 20 60 40 200]
 [40 40 30 120 250]
 [30 20 30 80 250]]

mat+mat is
[[2 2 4 2 8]
 [8 4 2 6 10]
 [6 2 2 4 10]]

mat*mat is
[[1 1 4 1 16]

1.6 Matrix Operations
There are two major matix Operations which are important for us.

1. Inner Product
Vector Vector
Matrix Vector
Matrix Matrix

2. Outer product

1.6.1 Inner Product

In terms of Inner Product or Dot product, <v,w> will be be nothing but sum of element wise product.

So, the dot product between vector and will be

We will be covering matrix matrix multiplication in much depth in next-to-next chapter, but you can take it for granted as of now.

1.6.2 Outer Product

The outer product on other end is

In [11]: mat = np.arange(9).reshape(3,3)
vec1 = np.array([1,2,3])
vec2 = np array([2 4 6])

[[1 1 4 1 16]
 [16 4 1 9 25]
 [9 1 1 4 25]]

vec2 = np.array([2,4,6])
print ('Vector v1 is %s\n'%vec1)
print ('Vector v2 is %s\n'%vec2)
print ('Vector Vector dot product is <v1,v2> is %s\n'%np.dot(vec1,vec2))
print ('---------------\n')

print ('Matrix is\n%s\n'%mat)
print ('Vector v2 is\n%s\n'%vec1)

print ('Matrix Vector product is <mat,vec1> is \n%s\n'%np.dot(mat,vec1))
print ('Matrix Matrix multiplication is <mat,mat> is \n%s\n'%np.dot(mat,mat))
print ('---------------\n')

print ('Vector v1 is %s\n'%vec1)
print ('Vector v2 is %s\n'%vec2)
print ('Vector Vector outer product is <v1,v2> is \n%s\n'%np.outer(vec1,vec2))

Vector v1 is [1 2 3]

Vector v2 is [2 4 6]

Vector Vector dot product is <v1,v2> is 28

Matrix is
[[0 1 2]
 [3 4 5]
 [6 7 8]]

Vector v2 is
[1 2 3]

Matrix Vector product is <mat,vec1> is
[8 26 44]

Matrix Matrix multiplication is <mat,mat> is
[[15 18 21]
 [42 54 66]
 [69 90 111]]

1.7 Statistical Functions
1. np.mean(data,axis=0)
2. np.var(data,axis=0)
3. np.sum(data,axis=0)
4. np.max(data,axis=0)
5. np.min(data,axis=0)
6. np.percentile(data, percentage,axis=0)

In [40]: mat = np.arange(9).reshape((3,3))
print ('Original matrix is \n%s\n'%mat)
print ('Overall mean of matrix is \n%s\n'%np.mean(mat))
print ('Row mean of matrix is \n%s\n'%np.mean(mat, axis=0))
print ('Column mean of matrix is \n%s\n'%np.mean(mat, axis=1))
print ('---------------------------\n')
print ('Overall varience of matrix is %s\n'%np.var(mat))
print ('Overall sum of matrix is %s\n'%np.sum(mat))
print ('Overall min of matrix is %s\n'%np.min(mat))
print ('Overall max of matrix is %s\n'%np.max(mat))

print ('-------------------------------------\n')
marks = np.array([30,31,32,40,90,95,97,98,99,100])
print ('Marks = %s\n'%marks)
print ('Overall 30 percent quantile of marks is %s\n'%(str(np.percentile(marks,30))))

Vector v1 is [1 2 3]

Vector v2 is [2 4 6]

Vector Vector outer product is <v1,v2> is
[[2 4 6]
 [4 8 12]
 [6 12 18]]

Original matrix is
[[0 1 2]
 [3 4 5]
 [6 7 8]]

1.8 Miscellenous Functions
In this section, we will be discussing some important miscellenous Functions which come in handy for matrix manipulation.

1.8.1 squeeze

numpy.squeeze(a,axis=None)
This function tries to reduce the excess dimensions which have only 1 element. If we print the shape of the ndary, these excess dimension will have
a 1 in that particular dimension's index. For example, a nd-matrix with shape (1,2,3,1), has and dimension as excess.

In [5]: ndmat = np.zeros(shape=(1,2,3,1))
print ('Original Shape of ndmat is %s\n'%str(ndmat.shape))
ndmat1 = np.squeeze(ndmat)

i t ('Sh f (d t) i % \ '% t (d t1 h))

Overall mean of matrix is
4.0

Row mean of matrix is
[3. 4. 5.]

Column mean of matrix is
[1. 4. 7.]

Overall varience of matrix is 6.666666666666667

Overall sum of matrix is 36

Overall min of matrix is 0

Overall max of matrix is 8

Marks = [30 31 32 40 90 95 97 98 99 100]

Overall 30 percent quantile of marks is 37.599999999999994

print ('Shape of np.squeeze(ndmat) is %s\n'%str(ndmat1.shape))
ndmat2 = np.squeeze(ndmat,axis=3)
print ('Shape of np.squeeze(ndmat,axis=3) is %s\n'%str(ndmat2.shape))

1.8.2 transpose

numpy.transpose(a, axes=None)
This function reverses the axes for 2D array.
For multidimensional array, it permutes the matrix according to the axis argument

In [21]: mat = np.zeros(shape=(2,3))
print ('Original Shape of 2D matrix is %s\n'%str(mat.shape))
mat_transpose = np.transpose(mat)
print ('Shape of np.transpose(mat) is %s\n'%str(mat_transpose.shape))
mat_transpose[1,0] = 1
print ('np.transpose is by yet again assignment by reference, as changes in transpose reflects in the orig
inal matrix\n')
print ('---------------------------------\n')
NDimensional matrix
ndmat = np.zeros(shape=(2,3,4))
print ('Original Shape of nDimensional matrix is %s\n'%str(ndmat.shape))
ndmat_transpose = np.transpose(ndmat)
print ('Shape of np.transpose(ndmat) is %s\n'%str(ndmat_transpose.shape))
ndmat_special_transpose = np.transpose(ndmat, axes = [0,2,1])
print ('Shape of np.transpose(ndmat, axes=[0,2,1]) is %s\n'%str(ndmat_special_transpose.shape))

Original Shape of ndmat is (1, 2, 3, 1)

Shape of np.squeeze(ndmat) is (2, 3)

Shape of np.squeeze(ndmat,axis=3) is (1, 2, 3)

Original Shape of 2D matrix is (2, 3)

Shape of np.transpose(mat) is (3, 2)

np.transpose is by yet again assignment by reference, as changes in transpose reflects in the original mat
rix

In []:

Chapter 1 Assignment
1. Create a null array of size 10 but the fifth value which is 1
2. Reverse a above created array (first element becomes last)
3. Create a 3x3 matrix with values ranging from 0 to 8
4. Find indices of non-zero elements from [1,2,0,0,4,0]
5. Create a 3x3x3 array with random values
6. Create a 10x10 array with random values and find the minimum and maximum values
7. Create a random vector of size 30 and find the mean value

Original Shape of nDimensional matrix is (2, 3, 4)

Shape of np.transpose(ndmat) is (4, 3, 2)

Shape of np.transpose(ndmat, axes=[0,2,1]) is (2, 4, 3)

