[image: ]
Introduction to Android
Android provides a rich application framework that allows you to build innovative apps and games for mobile devices in a Java language environment. The documents listed in the left navigation provide details about how to build apps using Android's various APIs.
If you're new to Android development, it's important that you understand the following fundamental concepts about the Android app framework:
Apps provide multiple entry points
Android apps are built as a combination of distinct components that can be invoked individually. For instance, an individual activity provides a single screen for a user interface, and a service independently performs work in the background.
From one component you can start another component using an intent. You can even start a component in a different app, such an activity in a maps app to show an address. This model provides multiple entry points for a single app and allows any app to behave as a user's "default" for an action that other apps may invoke.
Apps adapt to different devices
Android provides an adaptive app framework that allows you to provide unique resources for different device configurations. For example, you can create different XML layout files for different screen sizes and the system determines which layout to apply based on the current device's screen size.
You can query the availability of device features at runtime if any app features require specific hardware such as a camera. If necessary, you can also declare features your app requires so app markets such as Google Play Store do not allow installation on devices that do not support that feature.
UI Overview
All user interface elements in an Android app are built using View and ViewGroup objects. A View is an object that draws something on the screen that the user can interact with. A ViewGroup is an object that holds other View (and ViewGroup) objects in order to define the layout of the interface.
Android provides a collection of both View and ViewGroup subclasses that offer you common input controls (such as buttons and text fields) and various layout models (such as a linear or relative layout).
User Interface Layout

The user interface for each component of your app is defined using a hierarchy of View and ViewGroup objects, as shown in figure 1. Each view group is an invisible container that organizes child views, while the child views may be input controls or other widgets that draw some part of the UI. This hierarchy tree can be as simple or complex as you need it to be (but simplicity is best for performance).
[image: https://developer.android.com/images/viewgroup.png]
Figure 1. Illustration of a view hierarchy, which defines a UI layout.
To declare your layout, you can instantiate View objects in code and start building a tree, but the easiest and most effective way to define your layout is with an XML file. XML offers a human-readable structure for the layout, similar to HTML.
The name of an XML element for a view is respective to the Android class it represents. So a <TextView> element creates a TextView widget in your UI, and a <LinearLayout> element creates a LinearLayout view group. 
For example, a simple vertical layout with a text view and a button looks like this:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
              android:layout_width="fill_parent" 
              android:layout_height="fill_parent"
              android:orientation="vertical" >
    <TextView android:id="@+id/text"
              android:layout_width="wrap_content"
              android:layout_height="wrap_content"
              android:text="I am a TextView" />
    <Button android:id="@+id/button"
            android:layout_width="wrap_content"
            android:layout_height="wrap_content"
            android:text="I am a Button" />
</LinearLayout>
When you load a layout resource in your app, Android initializes each node of the layout into a runtime object you can use to define additional behaviors, query the object state, or modify the layout.
For a complete guide to creating a UI layout, see XML Layouts. 
User Interface Components

You don't have to build all of your UI using View and ViewGroup objects. Android provides several app components that offer a standard UI layout for which you simply need to define the content. These UI components each have a unique set of APIs that are described in their respective documents, such as Action Bar, Dialogs, and Status Notifications.

[bookmark: _GoBack]Mobile application testing
Mobile applications are first tested within the development environment using emulators and later subjected to field testing. Emulators provide an inexpensive way to test applications on mobile phones to which developers may not have physical access. The following are examples of tools used for testing application across the most popular mobile operating systems.
· Google Android Emulator
Google Android Emulator is an Android emulator that is patched to run on a Windows PC as a standalone app, without having to download and install the complete and complex Android SDK. It can be installed and Android compatible apps can be tested on it.
· The official Android SDK Emulator
The official Android SDK Emulator includes a mobile device emulator which mimics all of the hardware and software features of a typical mobile device (without the calls).
· MobiOne
MobiOne Developer is a mobile Web IDE for Windows that helps developers to code, test, debug, package and deploy mobile Web applications to devices such asiPhone, BlackBerry, Android, and the Palm Pre.
· TestiPhone
TestiPhone is a web browser-based simulator for quickly testing iPhone web applications. This tool has been tested and works using Internet Explorer 7, Firefox 2and Safari 3.
· iPhoney
iPhoney gives a pixel-accurate web browsing environment and it is powered by Safari. It can be used while developing web sites for the iPhone. It is not an iPhone simulator but instead is designed for web developers who want to create 320 by 480 (or 480 by 320) websites for use with iPhone.iPhoney will only run on Mac OS X 10.4.7 or later.
· BlackBerry Simulator
There are a variety of official BlackBerry simulators available to emulate the functionality of actual BlackBerry products and test how the BlackBerry device software, screen, keyboard and trackwheel will work with application.
· Windows UI Automation
To test applications that use the Microsoft UI Automation technology, it requires Windows Automation API 3.0. It is pre-installed on Windows 7, Windows Server 2008 R2 and later versions of Windows. On other operating systems, you can install using Windows Update or download it from the Microsoft Web site.
Tools[edit]
· eggPlant: A GUI-based automated test tool for mobile application across all operating systems and devices.
· Ranorex: Test automation tools for mobile, web and desktop apps.
· Testdroid: Real mobile devices and test automation tools for testing mobile and web apps.
Application stores[edit]
Several initiatives exist both from mobile vendor and mobile operators around the world. Application developers can propose and publish their applications on thestores, being rewarded by a revenue sharing of the selling price. An example is Apple's App Store, where only approved applications may be distributed and run on iOS devices (otherwise known as a walled garden). There are approximately 700,000 iOS Applications. Google's Android Market (now known as the "Play Store") has a large number of apps running on devices with Android OS. HP / Palm, Inc have also created the Palm App Catalog where HP / Palm, Inc webOS device users can download applications directly from the device or send a link to the application via a web distribution method. Mobile operators such as Telefonica Group andTelecom Italia have launched cross-platform application stores for their subscribers. Additionally, mobile phone manufacturers such as Nokia has launched Ovi app store for Nokia smartphones. Some independent companies, namely Amazon Appstore, Aptoide and GetJar, have created their own third-party platforms to reach more users in different locations. The Windows Phone Marketplace had more than 100,000+ apps available as of 7-11-2012 .

image1.png




image2.png




