

[DOCUMENT TITLE] SHYAM N.CHAWDA

What is Bit?

Á Bit is the smallest unit of data in a computer. A bit has a single binary value, either 0 or 1.

Á A byte is equal to 8 bits.

What is Program?

Á A set of instructions to carry out a task is called a program.

Á The program instructions to computers are in the form of string of binary digits.

What is programming language?

Á The program instructions are to obey with some notation system called programming language.

Á A programming language is a human - readable statements and grammar that a programmer uses

to instruct a computer how to operate.

Á Programs written in a programming language have to b e translated into machine code using

interpreter or compiler.

Á There are 3 t ypes of programming language: higher level, lower level and middle level.

What is Compiler?

Á Compiler is a type of software that translates source code into object code.

Á Compiler is language specific.

Á C compiler compiles only source program in C into equi valent machine code.

Á Compiler shows errors like invalid characters, wrong sequence of instructions each error.

Á Spends a lot of time analyzing and processing the program .

Á The resulting executable is some form of machine - specific binary code

Á Program execution is fast

What is Interpreter?

Á An interpreter is compute r program that executes instructions written in a programming language.

Á Interpreters translate code one line at time

Á An interpreter lets the programmer know immediately when and where problems exist in the code;
compiled programs make the programmer wait until the program is complete.

Á BASIC and LISP are especially designed to be executed by an interpreter.

Á Relatively little time is spent analyzing and processing the program

Á The resultin g code is some sort of intermediate code .

Á Program execution is relatively slow.

Á HTML is a special -purpose language that is interpreted; the interpreter for HTML is called a web

browser, and it reads the HTML line -by - line and renders a web page for display to a user based on

the HTML code.

Compare Translator and Compiler

Á A translator assumes the code is correctly formatted.

Á Compilers syntactically scan code to find syntax errors and in some cases correct them.

Á A translator produces only output for another compile.

Á A compiler generates object files and/or executables.

[DOCUMENT TITLE] SHYAM N.CHAWDA

Á A translator makes certain assumptions about the code being presented to it, that it is a complete

or reasonably complete piece of code.

Á A compiler will check and complain if you hand it a f ragment of a program.

What is higher level programming language?

Á It is problem -oriented language.

Á Higher level programming language is near to human language.

Á It is easier to use

Á Itôs machine independent. It may require some modification to run on any PC.

Á It requires translation into machine language before execution. There are 2 types of translator

óCompilerô or óInterpreterô to convert high level language in to machine language.

Á There are some rules for writing programs in higher level language.

Á Compi ler or interpreter checked rules of language if rules are violated; the compiler will detect

them and list them while translating instructions in higher level to machine level.

Examples: COBOL, BASIC, FORTARN etc.

Advantages:

1. Easy to learn and implement .

2. Portable.

3. Programmer productivity is very high.

4. Less errors and easy to find error.

5. Can create games, os and other applications.

Disadvantages:

1. Takes time to run.

2. Requires translation from high to machine.

What is low level language?

Á Low- level languages are sometimes described as being "close to the hardware."

Á A low - level language does not need a compiler or interpreter to run; the processor for which the

language was written is able to run the code without using either of these.

Á There are 2 way s to write low level language: Machine code and Assembly language.

What is Machine language?

Á A sequence of instructions in the form of 0 or 1.

Á Machine language is a set of instruction codes, which can be directly recognized by the CPU without

the help of any translator program.

Á It is the only language a microprocessor can understand directly.

Á Currently, programmers almost never write programs directly in machine code .

Á It directly converts into electrical signals to execute.

Example:

8B542408 83FA0077 06B80000 0000C383

FA027706 B8010000 00C353BB 01000000

Advantages:

[DOCUMENT TITLE] SHYAM N.CHAWDA

1. It requires less memory than any other language.

2. Faster than other.

Disadvantages:

1. The programs written in machine language are not portable.

2. Programming in machine language is laborious and tedious as it requires keeping track of memory

locations, command etc.

3. It is very difficult to find and debug errors in machine language.

4. It requires deep knowledge of the internal structure of the computer.

What is Assembly language?

Á Itôs 2GL language.

Á Itôs also called symbolic language.

Á This language is designed to replace each machine instructions with a human understandable

mnemonics.

Á The basic element of assembly language is mnemonics. The mnemonics are 2 to 4 letter words.

Á Assembler translates Assembly language into its machine code.

Á Examples of mnemonics are ADD, CALL, RET, DEC, SUB, INC etc.

Example:

 cmp edx, 3

 jbe @f

 mov ebx, ecx

 mov ecx, eax

 dec edx

Advantages

1. Easy to understand than machine language

2. Easy to find error and correct.

3. Easy to modify.

Disadvantages

1. Machine dependent.

2. Requires expert knowledge to understand.

3. Time consuming programming.

What is middle level language?

Á It contains many of the low - level and high - level capabilities.

Á Middle - level languages are sometimes thought of as building block languages, because the

programmer first creates the routines to perform all the program's necessary functions and then

puts them together.

Á A middle level language gives programmers a minima l set of control and data -manipulation

statements that they can use to define high - level constructs.

Examples: C , C++,Java

[DOCUMENT TITLE] SHYAM N.CHAWDA

Á C is often called a middle - level computer language. Middle - level does not mean C is less powerful,

harder to use, or less developed than high level languages such as BASIC or Pascal; nor is C similar

to a low - level language such as assembly language.

Á C combines elements of a high - level language with the functionalism of an assembler.

Á Using C user can access the hardware directly and at the same time the user can write instructions

in English like language.

Á C is a language that can be used to develop both 'user applications' and 'operating systems'.

What is ASCII?

Á ASCII stands for the American Standard Code for Information Interchange, and is pronounced with

a hard 'c' sound, as ask -ee.

Á As a standard, ASCII was first adopted in 1963 and quickly became wi dely used throughout the

computer world.

Á ASCII is a way of defining a set of characters which can be displayed by a computer on a screen,

as well as some control characters which have special functions.

Á Computers can only understand numbers, so an ASCII co de is the numerical representation of a

character such as 'a' or '@' or an action of some sort.

Example: A -65 Z -90 , a -97 z -122

What is Flowchart?

Á A flowchart is a graphical representation of the plan.

Á A flowchart isô a diagrammatic or pictorial representation of the algorithm.

Á It indicates the process of solution, the relevant operations and computations, the point of decision

and other information which is a part of the solution.

Á They are constructed by using special symbols. Each symbol represe nts an activity. The activity

could be input/output of data, computation/processing of data, taking a decision, terminating the

solution, etc. The symbols are joined by arrows to obtain a complete flowchart,

Á Symbols are used to represent particular operati ons or data, and flow lines indicate the sequence

of operations.

Start/Stop of Program flow (rounded rectangle)

Input / Output Operation (parallelogram)

Connector

Process to be performed (rectangle)

[DOCUMENT TITLE] SHYAM N.CHAWDA

Decision / Comparison Operation

Note that one arrow goes in, two go out

Advantages

1. Flowcharts are a good visual aid for communicating the logic of a system to all concerned.

2. Quicker grasp of relationships.

3. The flow chart becomes a model or blueprint of programmed or system that can be broken down

into detailed parts for study.

4. Program flow charts serve as a good program documentation.

5. In structions coded in a programming language may be checked against the flowchart to ensure

that no steps are omitted.

Example:

St ar t

Declar e t h e v ar iab les l ,b , an s

I n p u t l ,b

An s= l * b

Print òArea Of Rectangle:
ò & an s

St op

Algorithms

Á An algorithm is a step -by -step problem solving procedure that can be carried out by a computer.

Á It means recipe, procedure or technique.

Á The essential properties of an algorithm are:

o It should be simple.

o It should be clear with no ambiguity.

o It should lead to a unique solution of the problem.

Á Algorithms may be set up for any type of problem ; mathematical/ scientific or business.

[DOCUMENT TITLE] SHYAM N.CHAWDA

Example: Addition o f 2 values.

Step1: Start

Step2: Take 3 variables a,b,c

Step3: Print ñEnter value a & bò

Step4: Input a and b

Step5: C=a+b

Step6: Print a

Step7: Stop

Advantages

1. It is a step by step solution to a given problem which is very easy to understand.

2. It has got a definite procedure which can be exacted within a set period of time.

3. It is easy to first develop an algorithm, then convert it into a flowchart and then into a computer

program.

4. It has got a beginning and an end within which there are definite procedure s to produce output(s)

within a specified period of time.

5. It is easy to debug as every step has got its own logical sequence.

6. It Is Independent of programming languages.

Algorithm vs Flowchart

Algorithm Flowchart
It represents problem solution step by step in

descriptive format

It represents problem solution in graphical format

It is written with the help of some special words like

start, stop, input , print , etc .

It is drawn with the help of some standard shapes

like terminal , Rectangle, Diamond etc .

There is no need to write algorithm again if minor

changes are occurred.

Generally, it is required to redraw gain if minor

changes are occurred.

It is not easier to understand as compare to

Flowchart.

It is easier to understand as compare to Algorithm.

It is easy to write even a problem solution is

complex.

It is difficult to draw if problem solution is complex.

[DOCUMENT TITLE] SHYAM N.CHAWDA

Draw a Structure of C and explain each section in detail

C is a. structural language so it divides into some sections which are defin ed as below

Documentation Section

Link Section

Definition Section

Global declaration section

Main function() Section

{

(a)Declaration part

(b)Executable Part

}

Subprogram Section Function

Function -1

 (User Defined Function)

Function -2

ü Documentation Section:

The documentation section consists of a set of comment lines giving the name of the program, the

author and other details, which the programmer would like to use later.

ü Lin k Section:

The link section provides instruction to the comp iler to link functions from the system library.

ü Definition Section:

The definition Section defines all symbolic constants.

ü Global declaration section:

There are some variables that are used in more than one function. such variables and are declared

in the global declaration section.

ü Main function () Section

Every C program must have one. main () function. This function contains two parts, declaration.

part and executable part The declaration part declares all the variables used in the executable part.

There is at least. one statement in the executable part. There is at least one statement in the

executable part. These two parts must appear between the opening and closing braces. The

program execution begins at the opening brace and end at the closing br aces. The closing brace of

the main function section is the logical end of the program. All statements in the declaration and

executable parts end with a semicolon.

ü Subprogram Section

The subprogram section contains all the user defined functions that are called in main function.

[DOCUMENT TITLE] SHYAM N.CHAWDA

C constants

Primary Constants

Integer Real character

Secondary
Constants

Array Pointer Structer Union
Enum.

etc

Explain types of Constants

Constants

Constants refer to fixed values that do not change during the execution of a program.

C constants can be divided into two major categories:

a) Primary Constants

b) Secondary Constants

Keywords in C

A auto D double int struct

B break E else Long switch

 Case E enum R register T typedef

 Char E extern R return U union

C const F float short unsigned

 continue F for signed void

 default goto sizeof volatile

 do if if static while

Explain Backslash character constants

C supports some special backslash character constants that are used in output functions.

Each one of them represents one character, although they consist of two characters. These character

combinations are known as escape sequence .

The characters and their meanings are:

\ b backspace BS

\ f form feed

\ n new line

\ r carriage return

\ t horizontal tab

[DOCUMENT TITLE] SHYAM N.CHAWDA

Calculate

Compare

Perform Etc.

Name

Data type

Variable

\ " double quotes (not all versions)

\ ' single quote character '

\ \ backslash character

Variables

In C, a variable must be declared before it can be used. Variables can be declared at the start of any block

of code, but most are found at the start of each function.

1. A variable is a location in your computer's memory in which you can store a value and

from which you can later retrieve that value.

2. We always to variable to do below task:

3. A variable is a data item of a fundamental type (for example, int, float, or double).

Rules of variable:

Á A variable must be declared before it can be used.

Á Every variable has a name and a value. The name identifies the variable, the value stores data.

Á Every variable name in C must start with a letter or_.

Á C recognizes upper and lower case characters as being different. E.g. int a,A; both are distinct .

Á Finally, you cannot use any of C's keywords like main, while, switch etc as variable names.

Á Length of the variable is max 31 characters.

Á White space is not allowed.

Data Types

Á Variables can only store finite numbers.

Á Datatype is nothing but a capacity of a variable. How much the variable can store that data?

Á When we declare variable it requires some data type also like

Datatype Variable name;

int a; char b;

Á When you declare variable:

1. Their size in memory.

[DOCUMENT TITLE] SHYAM N.CHAWDA

2. What information they can hold.

3. What actions can be performed on them?

The four basic data types are:

Integer These are whole numbers, both positive and negative.

Float These are numbers which contain fractional parts, both positive and negative.

Double These are exponential numbers, both positive and negative.

Character These are single characters.

All of the integer types plus the char are called the integral types. float and double are called the real

types.

Define operator. Give the list of types of operator

Á An operator is a symbol or other character indicating a arithmetic operation that acts on one or

more elements in an application.

Á Operators are symbols (characters or keywords) that specify operations to be performed on one or

two operands (or arguments).

Á Operators that take one operand are called unary operators.

Á Operators that take two operands are called binary operators.

Á Opera tors that take 3 operands are called ternary operators.

C operators are classified into a number of categories:

1. Arithmetic

2. Relational

3. Logical

4. Assignment

5. Increment/Decrement

6. Conditional

7. Bitwise

8. Special

Arithmetic operators

A holds 10 and variable B holds 20 then

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

[DOCUMENT TITLE] SHYAM N.CHAWDA

* Multiplies both operands A * B will give 200

/ Divides numerator by de -numerator B / A will give 2

% Modulus Operator and remainder of after an integer division B % A will give 0

Relational operators

A holds 10 and variable B holds 20 then

Operator Description Example

==
Checks if the values of two operands are equal or not, if yes then condition

becomes true.

(A == B) is not

true.

!=
Checks if the values of two operands are equal or not, if values are not

equal then condition becomes true.
(A != B) is true.

>
Checks if the value of left operand is greater than the value of right

operand, if yes then condition becomes true.

(A > B) is not

true.

<
Checks if the value of left operand is less than the value of right operand,

if yes then condition becomes true.
(A < B) is true.

>=
Checks if the value of left operand is greater than or equal to the value of

right operand, if yes then condition becomes true.

(A >= B) is not

true.

<=
Checks if the value of left operand is less than or equal to the value of

right operand, if yes then condition becomes true.

(A <= B) is

true.

Logical operators

A holds 1 and variable B holds 0

Assignment operators

Operator Description Example

=
Simple assignment operator, Assigns values from right side operands to

left side operand

C = A + B will

assign value of

A + B into C

Operator Description Example

&&
Called Logical AND operator. If both the operands are non -zero, then

condition becomes true.

(A && B) is

false.

||
Called Logical OR Operator. If any of the two operands is non -zero, then

condition becomes true.
(A || B) is true.

!
Called Logical NOT Operator. Use to reverses the logical state of its

operand. If a condition is true then Logical NOT operator will make false.

!(A && B) is

true.

[DOCUMENT TITLE] SHYAM N.CHAWDA

+=
Add AND assignment operator, It adds right operand to the left operand

and assign the result to left operand

C += A is

equivalent to C

= C + A

-=
Subtract AND assignment operator, It subtracts right operand from the

left operand and assign the result to left operand

C -= A is

equivalent to C

= C - A

*=
Multiply AND assignment operator, It multiplies right operand with the left

operand and assign the result to left operand

C *= A is

equivalent to C

= C * A

/=
Divide AND assignment operator, It divides left operand with the right

operand and assign the result to left operand

C /= A is

equiv alent to C

= C / A

%=
Modulus AND assignment operator, It takes modulus using two operands

and assign the result to left operand

C %= A is

equivalent to C

= C % A

Increment and Decrement operators

Operator Description Example

++ Increments operator increases integer value by one A++ will give 11

-- Decrements operator decreases integer value by one A-- will give 9

Difference between ++ and -- operator as postfix and prefix

When i++ is used as prefix(like: ++var), ++var will increment the value of var and then return it but, if

++ is used as postfix(like: var++), operator will return the value of operand first and then only increment

it. This can be demonstrated by an example:

#include <stdio.h>

int main(){

 int c=2,d=2;

 printf("%d \ n",c++); //this statement displays 2 then, only c incremented by 1 to 3.

 printf("%d",++c); //this statement increments 1 to c then, only c is displayed.

 return 0;

}

Output 2 and 4

Conditional operators (Ternary operators) IMP

Á The conditional operator in C is also known as ternary operator. It is called ternary operator

because it takes three arguments. The conditional operator evaluates an expression returning a

value if that expression is true and different one if the expressi on is evaluated as false.

Á It works on three values as opposed to the binary operators you have seen that operate on only

two values.

Á The conditional operator is used to replace if -else logic in some situations.

[DOCUMENT TITLE] SHYAM N.CHAWDA

Á Where Exp1, Exp2, and Exp3 are expressions. N otice the use and placement of the colon. The

value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then Exp2 is

evaluated and becomes the value of the entire ? expression. If Exp1 is false, then Exp3 is

evaluated and its value becomes the value of the expression.

Á It is a two - symbol operator, ?: , with the following format:

Result = conditional_expression ? expression1:expression2 ;

Example

if (a > b)

 ans = 10;

Else

 ans = 25;

You can easily rewrite this kind of if - else code by using a single conditional operator.

ans = a > b ? 10: 25;

Example: Find maximum between 2 variables without using If..else

#include<stdio.h>

#include<conio.h>

void main()

{

 int a=10,b=20;

 char c;

 clrscr();

 c=(b>a)?'f':'s ';

 printf(" \ nAns = %c",c);

getch();

}

Bitwise operators

Á Each of the bitwise operators affects individual bits in a value.

Á Some of these operators are binary, taking two bits and returning a third bit.

Á Bitwise operators only work on values that reside in a word or less of storage.

Á Bitwise operators cannot be used with floating point, double, or long values.

Á The size of a word will vary from one machine architecture to another.

Operator Description Associativity

~ Ones complement right to left

<< Left shift left to right

>> Right shift left to right

& Bitwise AND left to right

[DOCUMENT TITLE] SHYAM N.CHAWDA

^ Bitwise XOR left to right

| Bitwise OR left to right

 Bitwise Complement: (~)

ü This operator is a unary operator that flips the value of each bit.

ü The operator takes a bit and converts it to 0 if the bit was 1 and to 1 if the bit was 0.

Truth Table: Ones Complement (~)

Value ~value

0 1

1 0

Example

 X=100110 , ~X=011001

Special operators

The comma operator

The comma operator can be used to link the related expressions together.

Example

 Value=(x=10, y=5, x+y);

The sizeof operator

¶ The sizeof operator returns the size of its operand in bytes.

¶ The sizeof operator always precedes its operand. The operand may be an expression or it may be a

cast.

Example:

int i;

char c;

printf(ñSize of integer : %dò,sizeof(i));

printf(ñSize of character : %cò,sizeof(c));

Output :

Size of integer : 2

Size of character : 1

Hierarchy of Operators

 Operators Type

[DOCUMENT TITLE] SHYAM N.CHAWDA

 ! Logical NOT

 * / % Arithmetic and modulus
 + - Arithmetic
 < > <= >= Relational

 == != Relational
 && Logical AND

 || Logical OR
 = Assignment

Hierarchy of Operations

While executing an arithmetic statement, which has two or more operators, we may have some problems

as to how exactly does it get executed.

Example: 2 * x - 3 * y, A / B * C

The priority or precedence in which the operations in an arithmetic statement are performed is called the

hierarchy of operations.

Priority

 Operators

 Description

1
st

 * / %

 multiplication, division, modular division

2
nd

 + - addition, subtraction

 3
rd

 = = assignment

Explain Branching block or Selection block

There are 2 types of it :

1. Conditional or Test structure or Decision making block

2. Unconditional

Conditional block implementation

Á If..else

Á Switch..case

Unconditional block implementation

Á Break

Á Continue

Á Goto

4ÈÅ)Æȣȣ%ÌÓÅ 3ÔÁÔÅÍÅÎÔ

Decision making are needed when, the program encounters the situation to choose a particular statement

among many statements.

[DOCUMENT TITLE] SHYAM N.CHAWDA

It directs the program to execute a certain section of code.

The if statement checks whether the text expression inside parenthesis () is true or not. If the test

expression is true, statement/s inside the body of if statement is executed but if test is false, statement/s

inside body of if is ignored.

Syntax:

if (test expression)

 {

 True -block statement(s)

 }

else

 {

 False-block statement(s)

 }

Explanation :

If the test expression is true, then the true -block

statement(s), immediately following the if statement are

executed; otherwise, the false -block statement(s) are

executed.

Example:

#include<stdio.h>

#include<conio.h>

main ()

{

int a=5;

 clrscr();

 if(a < 0)

 {

 printf(" \ nNo is negative");

 }

 else

 {

 printf(" \ nNo is positive");

 }

 getch();

}

Rules:

Á Itôs not compulsory to write else block.

Á We cannot write multiple if or else.

Á Usually we have to write {} braces.

Á We cannot write condition with else.

Á We can use logical and relational operator in condition expression.

if(a>b) , if(a>b && a>c)

[DOCUMENT TITLE] SHYAM N.CHAWDA

Á If condition can be nested.

.ÅÓÔÉÎÇ ÏÆ)Æȣȣ%ÌÓÅ

Á Sometimes we wish to make a multi -way decision based on several conditions.

Á The most general way of doing this is by using the else if variant on the n if statement.

Á This works by cascading several comparisons.

Á As soon as one of these gives a true result, the following statement or block is executed, and no

further comparisons are performed.

It is a conditional statement which is used when we wan t to check more than 1 conditions at a time in a

same program. The conditions are executed from top to bottom checking each condition whether it meets

the conditional criteria or not. If it found the condition is true then it executes the block of associat ed

statements of true part else it goes to next condition to execute.

Syntax:

if(condition)

{

 if(condition)
 {

 statements;

 }

 else

 {

 statements;

 }

}

else

{

 statements;

}

In above syntax, the condition is checked first. If it is true, then the program control flow goes inside the

braces and again checks the next condition. If it is true then it executes the block of statements

associated with it else executes else part.

Examp le:

#include <stdio.h>

#include <conio.h>

void main()

{

 int no;

 clrscr();

 printf(" \ n Enter Number :");

 scanf("%d",&no);

 if(no>0)

 {

 printf(" \ n\ n Number is greater than 0 !");

 }

 else

 {

 if(no==0)

 {

[DOCUMENT TITLE] SHYAM N.CHAWDA

 printf(" \ n\ n It is 0 !");

 }

 else

 {

 printf("Number is less than 0 !");

 }

 }

 getch();

}

The Switch statement

A switch statement allows a variable to be tested for equality

against a list of values.

Each value is called a case, and the variable being switched

on is checked for each switch case.

In switch...case, expression is either an i nteger or a

character. If the value of switch expression matches any of

the constant in case, the relevant codes are executed and

control moves out of the switch...case statement. If the

expression doesn't matches any of the constant in case, then

the defa ult statement is executed.

The switch statement is used to select multiple alternative

execution paths. This means it allows any number of possible

execution paths. However, this execution depends on the

value of a variable or expression. The switch statement in

Java is the best way to test a single expression against a

series of possible values and executing the code.

Syntax:

switch(variable or expression)

{

case label1:

 logic1.;
 break;

case label2:

 logic2.;

 break;

default:

 default log ic;

}

Example:

#include<stdio.h>

#include<conio.h>

main()

{

[DOCUMENT TITLE] SHYAM N.CHAWDA

 char operator;

 float num1,num2;

 printf("Enter operator either + or - or * or divide : ");

 scanf("%c",&operator);

 printf("Enter two numbers: ");

 scanf("%f %f",& num1,&num2);

 switch(operator)

 {

 case '+':

 printf("num1+num2=%.2f",num1+num2);

 break;

 case ' - ':

 printf("num1 -num2=%.2f",num1 -num2);

 break;

 case '*':

 printf("num1 *num2=%.2f",num1*num2);

 break;

 case '/':

 printf("num2/num1 = %.2f",num1/num2);

 break;

 default:

 printf("Error! operator is not correct");

 break;

 }

getch();

}

The switch statement tests the value of a given variable against a list of case values and when a math is

found, a block of statements associated with the case is executed.

Rules for switch statements

1. The break statement transfers the control out of the switch statement.

2. The break statement is optional. That is two, or more case labels may belong to the same

statements.

3. The default label is optional. If present, it will be executed when the expression does not find a

matching case label.

4. There can be at m ost one default label.

5. The default may be placed anywhere but usually placed at the end.

6. It is permitted to nest switch statements.

Other Example:

main()

{

int ans=1;

clrscr();

switch (ans)

{

[DOCUMENT TITLE] SHYAM N.CHAWDA

case 1:

 System.out.println("The number is 1.");

 break;

case 2:

case 4:

case 8:

 System.out.println("The number is 2, 4, or 8.");

 break;

case 3:

case 6:

case 9:

 System.out.println("The number is 3, 6, or 9.");

 break;

case 5:

 System.out.println("The number is 5.");

 break;

default:

 System.out.println(" or is outside the range 1 to 9.");

}

getch();

}

Unconditional Block

There are 3 types of it

Break

Continue

Goto

Break

Á A break statement is used to exit from the loop or we are seeing the break statement in switch

case.

Á Both exit and break exit will transfer the control to the same statement that appears next to the

loop.

Á When the loops are nested the break would only exit from t he single loop.

Á A break within a loop should always be protected within an d if statement which provides the test to

control the exit condition.

Example: Prime number

#include<stdio.h>

#include<conio.h>

main()

{

int no;

int i,flag=1;

clrscr();

 printf(" \ n\ nEnter no ->");

 scanf("%d",&no);

 for(i=2;i<no;i++)

[DOCUMENT TITLE] SHYAM N.CHAWDA

 {

 if(no%i==0)

 {

 flag=0;

 break;

 }

 }

 if(flag==0)

 printf(" \ n\ nNo is not prime");

 else

 printf(" \ n\ nNo is prime");

getch();

}

Continue

Á The continue statement is used to skipping the statements of program.

Á This causes the loops to be continued with the next iteration.

Á In a while and do -while loops continue causes the control to go directly to the test -condition and

then continue the iteration process.

 While(test -condition) do

 { {

 -------------------- ---------------------

 if(condition) if(condition)

 continue; continue;

 -------------------- ------------------

 -------------------- ------------------

 } }

 while(test -condition)

Note that the use of break and continue statements in any of the loops is considered unstructured

programming.

Try to eliminate the use of these jump statements as far as possible.

 The GOTO statement

Á C has a goto statement which permits unstructured jumps to be made.

Á Its use is not recommended, so we'll not teach it here. Consult your textbook for details of its use.

Á Note that a goto breaks the normal sequential execution of the program.

Á The label: is before statement goto label, a loop will be fo rmed and some statements will be

executed repeatedly. Such a jump is called backward jump.

Á The label: is placed after the goto label; some statements will be skipped and the jump is known

as a forward jump.

[DOCUMENT TITLE] SHYAM N.CHAWDA

Example

main()

{

 double x,y;

 read:

 scanf(ñ%fò,&x);

 if(x<0) goto read;

 y=sqrt(x);

 printf(ñ%f %f\nò,x,y);

 goto read;

}

Control Statement and Loop Statement

Control statements control the flow of program execution with the given condition but control transfer

statements causes the change in program flow without any condition

Loop

We can repeat the statements in a loop structure until a condition is True, until a condition is False, a

specified number of times, or once for each element in a collection.

The following illustration shows a loop structure that runs a set of statements until a condition becomes

true

Running a set of statements until a condition becomes true

There are 3 ways to write a loop:

1. While

2. For

3. Do..while

[DOCUMENT TITLE] SHYAM N.CHAWDA

While Loop

Á The while loop allows for the repeated execution of a group of statements as long as a condition is

true.

Á The condition is checked each time before the code is executed.

Á The While is an entry - controlled loop statement.

Á The while loop evaluates the test expression before every loop, so it can execute zero times if the

condition is initially false.

Syntax

While (expression)

 {

 Statement - block;

 }

Here the initialization of a loop control variable is generally done before the loop separately. The testing of

the condition is done in while by evaluating the expression

within the parenthesis.

If the evaluation result is true value, the block of state ment

within calibrates is executed.

If the evaluation result is false value the block of statements

within the body of loop is skipped and the loop execution get

terminated with the control passing to the statement

immediately following the while constru ct.

The increment or decrement of the loop control variable is

generally done within the body of the loop.

Example

i=1;

while(i<=5)

{

printf(" \ n%d",i);

i++;

}

$Ïȣ7ÈÉÌÅ ,ÏÏÐ

Á In do statement, the program proceeds to evaluate

the body of the loop first.

Á Here the condition will check at the end of the loop.

Á At the end of the loop, the test -condition in the

while statement is evaluated. If the condition is

[DOCUMENT TITLE] SHYAM N.CHAWDA

true, the program continues to evaluate the body of the loop once again. This process continu es

as long as the condition is true.

Syntax

do

 {

 body of the loop

 }

While(test - condition) ;

Example:

#include <stdio.h>

#include <conio.h>

void main ()

{

 int a = 22,i=1;

 clrscr();

 do

 {

 printf("%d X %d = %d", a,i,a*i);

 i = i + 1;

 }while(a < 11);

 getch();

}

Difference between Do..while and While loop

While Do..while

In While loop the condition is tested first and then

the statements are executed if the condition turns

out to be true.

In do while the statements are executed for the

first time and then the conditions are tested, if the

condition turns out to be true then the statements

are executed again.

These situations tend to be relatively rare, thus

the simpl e while is more commonly used.

A do while is used for a block of code that must be

executed at least once.

while loop do not run in case the condition given

is false

A do while loop runs at least once even though

the the condition given is false

In a whi le loop the condition is first tested and if it

return s true then it goes in the loop

In a do -while loop the condition is tested at the

last.

While loop is entry control loop do while is exit control loop.

Syntax:

while (condition)

{

Statements;

}

Syntax:

do

{

Statements;

}while(condition);

[DOCUMENT TITLE] SHYAM N.CHAWDA

Entry controlled loop and Exit controlled loop

In entry controlled loop the test condition is checked first if that condition is true than the block of

statement in the loop body will be executed first and a t the end the test condition is checked, if condition

is satisfied than body of loop will be executed again.

While in exit controlled loop the body of loop will be executed first and at the end the test condition is

checked, if condition is satisfied than body of loop will be executed again .

For Loop

Á The for loop works well where the number of

iterations of the loop is known before the loop is

entered.

Á The head of the loop consists of three parts

separated by semicolons.

Á The first is run before the loop is entered. This is

usually the initialization of the loop variable.

Á The second is a test, the loop is exits when this

returns false.

Á The third is a statement to be run every time the

loop body is completed. This is usually an

increment of the loop c ounter.

Syntax

 for (init ; test -condition ; increment/decrement)

 {

 Body of the loop;

 }

Á The init step is executed first, and only once.

This step allows you to declare and initialize any

loop control variables.

Á Next, the condition is evaluated. If it is true, the

body of the loop is executed. If it is false, the

body of the loop does not execute and flow of

control jumps to the next statement just after

the for loop.

Á After the body of the for loop executes, the flow

of control jumps ba ck up to the increment

statement. This statement allows you to update

any loop control variables.

Á The condition is now evaluated again. If it is true, the loop executes and the process repeats itself

(body of loop, then increment step, and then again condi tion). After the condition becomes false,

the for loop terminates.

Example:

#include <stdio.h>

#include <conio.h>

void main ()

{

[DOCUMENT TITLE] SHYAM N.CHAWDA

 int i;

 clrscr();

for(int i = 1; i < 20; i++)

 {

 printf("value of i: %d \ n", i);

 }

 getch();

}

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally used for

this purpose. Since none of the three expressions that form the for loop are required, you can make an

endless loop by leaving the condit ional expression empty.

#include <stdio.h>

#include <conio.h>

void main ()

{

Clrscr();

 for(; ;)

 {

 printf("This loop will run forever. \ n");

 }

getch();

}

When the conditional expression is absent, it is assumed to be true. You may have an initialization and

increment expression, but C programmers more commonly use the for(;;) construct to signify an

infinite loop.

[DOCUMENT TITLE] SHYAM N.CHAWDA

Explain Storage class

A storage class defines the scope (visibility) and life - time of variables and/or functions within a C Program.

These specifiers precede the type that they modify. There are the following storage classes,

which can be used in a C Program

1. auto

2. register

3. static

4. extern

The auto Storage Class

The auto storage class is the default storage class for all local variables.

void add()

{

 int a ;

 auto int a ;

}

The example above defines two variables with the same storage class , auto can only be used within

functions, i.e., local variables.

Variables declared inside the function body are automatic by default. These variable are also known as

local variables as they are local to the function and doesn't have meaning outside that function

Since, variable inside a function is automatic by default, keyword auto are rarely used.

The register Storage Class

The register storage class is used to define local variables that should be stored in a register instead of

RAM.

We can never get address of register variable.

It has faster access than normal variable.

void main()

{

 register int miles;

}

The static Storage Class

The value of static variable persists until the end of the program. A variable can be declared static using

keyword: static.

Static automatic variables continue to exist even after the block in which they are defined terminates.

[DOCUMENT TITLE] SHYAM N.CHAWDA

Thus, the value of a static variable in a function is retained between repeated function calls to the same

function.

static int count = 5;

main()

{}

The Extern Class

External variables may be declared outside any function block in a source code file the same way any

other variable is declared; by specifying its type and name.

The extern storage class is used to give a reference of a global variable that is visible to ALL the program

files.

When you have multiple files and you define a global variable or function, which will be used in other files

also, then extern will be used in another file to give reference of defined variable or function.

Just for understanding , extern is used to declare a global variable or function in another file.

The extern modifier is most commonly used when there are two or more files sharing the same global

variables or functions as explained below.

Example:

void Check();

int a=5;

main(){

 a+=4;

 Check();

}

void Check(){

 ++a;

 printf("a=%d \ n",a);

}

[DOCUMENT TITLE] SHYAM N.CHAWDA

1 dimensional

2 dimensional

Multi dimensional

Arrays

 Arrays are classified as aggregate data type.

 Aggregate data types are composed of one or more elements.

 Itôs a derived data type.

 An array is a fixed - type sequenced collection of elements of the same data type.

 An array is collection of elements that share the same name.

 Array is a collection of similar data value having same data type.

 Array is a derived data type.

Characteristics of Array:

 Array is a data type.

 Array is a structure data type.

 Array can arrange bulky data.

 Array can store same type of data value.

 Array always share common variables.

Exa mple

An array name salary can be defined to represent a set of salaries of a group of employees.

A particular value say no. of employee can be defined by writing a number called index number or

subscript in brackets after the array name as follows:

 Salary[10] represents the salary of 10th employee.

Complete set of values is referred to as an array and the individual values are called elements.

Arrays can be of any type.

There are 3 types of array is given above.

[DOCUMENT TITLE] SHYAM N.CHAWDA

To declare array,Syntax

<data type><variable name>[Index/Range];

One-Dimensional Arrays

A list of items can be given one variable name using only one subscript and such a variable is called a

single -subscripted variable or a one -dimensional array.

A single -subscripted variable can be expressed as

x[0], x[2], x[3]éééé..x[n].

Example

Set of five integers (24, 35, 1, 17, 67) can be represented by an array variable number, then we can

declare the variable number as follows:

int number[5];

The computer reserves five storage locations as follows:

number[0]

number[1]

number[2]

number[3]

number[4]

The values to the array elements can be assigned as follows:

number[0] = 24;

number[1] = 37;

number[2] = 1;

number[3] = 17;

number[4] = 67;

This value is stored as follows:

number[0]

number[1]

number[2]

number[3]

number[4]

 These elements can be used in the program just like any other variable :

a = number[0] +10;

number[4] = number[0] + number[1];

value[6] = number[i] * 3;

24
37

1
 17

67

[DOCUMENT TITLE] SHYAM N.CHAWDA

Difference between: Fix sizing Initialization and Automatic sizing Initialization

Fix sizing Initialization Automatic Sizing Initialization

Known as static Array Known as dynamic Array

Index value have to declare and it is fix No need to declare index value and it is automatic

Error possibility maximum Error possibly minimum

Exa mple : int no[3]={1,2,3} Example : int no[]={1,2,3}

Initialization of Arrays

Array elements are initialized in the same way as any other variables are initialized.

Compile time

main()

{

int a[5]={1};

int age[] = {21,32,43,22,25};

float ans[5]={0.0,3.0,4.6,3.4,6.7};

char name[] = ñVedika Chawda";

char name2[20]=ñVedika Chawda";

float ans[5]={2.2,3.4};

clrscr();

 a[0]=5;

 a[1]=10;

 a[2]=30;

 a[3]=20;

 a[4]=88;

getch();

}

Runtime

main()

{

int i,n,a[100];

clrscr();

 printf("Enter n - > ");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf(" \ nEnter a[%d] - >",i);

 scanf("%d",&a[i]);

 }

for(i=0;i<n;i++)

 {

[DOCUMENT TITLE] SHYAM N.CHAWDA

 printf(" \ na[%d] = %d",i,a[i]);

 }

getch();

}

Drawbacks of array initialization

ü There is no convenient way to initialize only selected elements.

ü There is no shortcut method for initializing large number of array elements.

Some examples of Array

Example: Get values of array and print in reverse mode.

#include<conio.h>

#include<stdio.h>

main()

{

int a[5],i;

clrscr();

 for(i=0;i<5;i++)

 {

 printf("Enter value a[%d] ->",i);

 scanf("%d",&a[i]);

 }

 for(i=4;i>=0;i --)

 {

 printf(" \ na[%d] = %d",i,a[i]);

 }

getch();

}

Enter value a[0] ->10

Enter value a[1] ->22

Enter value a[2] ->33

Enter value a[3] ->44

Enter value a[4] ->50

a[4] = 50

a[3] = 44

a[2] = 33

a[1] = 22

a[0] = 10

Example: Add 2 array in 3 rd array.

#define N 5

main()

[DOCUMENT TITLE] SHYAM N.CHAWDA

{

int a[N],b[N],c[N],i,sum=0;

clrscr();

 for(i=0;i<N;i++)

 {

 printf(" \ nEnter a[%d] ->",i);

 scanf("%d",&a[i]);

 }

 for(i=0;i<N;i++)

 {

 printf(" \ nEnter b[%d] ->",i);

 scanf("%d",&b[i]);

 }

 for(i=0;i<N;i++)

 {

 c[i]=a[i]+b[i];

 }

 for(i=0;i<N;i++)

 {

 printf(" \ nC[%d] ->",c[i]);

 }

getch();

}

Example: Search value from the array elements

#include<stdio.h>

#include<conio.h>

#define SIZE 100

main()

{

int a[SIZE],n,i,find,pos= -1;

clrscr();

 printf("Enter n ->");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf(" \ nEnter value a[%d] ->",i);

 scanf("%d",&a[i]);

 }

 printf(" \ n\ nEnter value for find ->");

 scanf("%d",&find);

 for(i=0;i<n;i++)

[DOCUMENT TITLE] SHYAM N.CHAWDA

 {

 if(a[i]==find)

 {

 pos=i;

 break;

 }

 }

 if(pos== -1)

 printf("value nathi");

 else

 printf("Value is on pos %d",pos);

getch();

}

Example: Find maximum and minimum in all array elements

main()

{

int i,n,a[100],max=0,min=0;

clrscr();

 printf("Enter n ->");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf(" \ nEnter a[%d] ->",i);

 scanf("%d",&a[i]);

 }

 min=a[0];

 max=a[0];

 for(i=0;i<n;i++)

 {

 if(max<a[i])

 max=a[i];

 if(min>a[i])

 min=a[i];

 }

 printf(" \ n\ nMax = %d Min = %d",max,min);

getch();

}

Two - Dimensional Arrays

Single -dimensional array variables are used to store list of values.

Sometimes table of values will required to be stored in certain situations.

[DOCUMENT TITLE] SHYAM N.CHAWDA

10
00

20
01

30
02

40
10

50
11

60
12

Example

 Item1 Item2 Item3

 Salesgirl#1 310 275 365

 Salesgirl#2 210 190 325

 Salesgirl#3 405 235 240

 Salesgirl#4 260 300 380

This table can be viewed as matrix consisting of 5 rows and 4 columns.

C supports a two -dimensional array to store such data table.

It takes the following general form:

Type array_name [row_size][column_size]

Initializing Two -dimensional arrays

Two -dimensional arrays may be initialized with the list of initial values enclosed in the braces at the time

of declaration.

Compile time

Example.

int table[2][3] ={10,20,30,40,50,60};

int table[2][3] = {{10,20,30},{40,50,60}};

If the values are missing in an initialize, they

are automatically set to zero.

int table[2][3] = {{1,1},{2}};

When all the elements are to be initialized to zero following method is used:

int table[2][3] = {{0},{0}};

Runtime

main()

{

int a[2][2],i,j;

clrscr();

 for(i=0;i<2;i++)

 {

 for(j=0;j<2;j++)

 {

 printf("Enter value of a[%d][%d] - > ",i,j);

 scanf("%d",&a[i][j]);

 }

 }

[DOCUMENT TITLE] SHYAM N.CHAWDA

 printf(" \ n\ n");

 for(i=0;i<2;i++)

 {

 for(j=0;j<2;j++)

 {

 printf("%d ",a[i][j]);

 }

 printf(" \ n");

 }

getch();

}

Example: Get the value of 3X3 array and print it.

main()

{

int a[3][3],i,j;

clrscr();

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf("Enter value of a[%d][%d] - > ",i,j);

 scanf("%d",&a[i][j]);

 }

 }

 printf(" \ n\ n");

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf("%d ",a[i][j]);

 }

 printf(" \ n");

 }

getch();

}

Output:

Enter value of a[0][0] - > 1

Enter value of a[0][1] - > 2

Enter value of a[0][2] - > 3

Enter value of a[1][0] - > 4

Enter value of a[1][1] - > 5

Enter value of a[1][2] - > 6

[DOCUMENT TITLE] SHYAM N.CHAWDA

Enter value of a[2][0] - > 7

Enter value of a[2][1] - > 8

Enter value of a[2][2] - > 9

1 2 3

4 5 6

7 8 9

Example: Print only diagonal elements of the array

main()

{

int a[3][3],i,j;

clrscr();

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf("Enter value of a[%d][%d] - > ",i,j);

 scanf("%d",&a[i][j]);

 }

 }

 printf(" \ n\ n");

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 if(i==j)

 printf("%d ",a[i][j]);

 else

 printf("* ");

 }

 printf(" \ n");

 }

getch();

}

Enter value of a[0][0] - > 1

Enter value of a[0][1] - > 2

Enter value of a[0][2] - > 3

Enter value of a[1][0] - > 4

Enter value of a[1][1] - > 5

Enter value of a[1][2] - > 6

Enter value of a[2][0] - > 7

Enter value of a[2][1] - > 8

Enter value of a[2][2] - > 9

[DOCUMENT TITLE] SHYAM N.CHAWDA

1 * *

* 5 *

* * 9

Example: Add 2 matrix in 3 rd

#include<stdio.h>

#include<conio.h>

#define SIZE 100

main()

{

int a[2][3],b[2][2],c[2][2],n,i,j;

clrscr();

 for(i=0;i<2;i++)

 {

 for(j=0;j<2;j++)

 {

 printf(" \ n\ nEnter value of a[%d][%d] - > ",i,j);

 scanf("%d",&a[i][j]);

 printf(" \ n\ nEnter value of b[%d][%d] - > ",i,j);

 scanf("%d",&b[i][j]);

 c[i][j]=a[i][j]+b[i][j];

 }

 }

 printf(" \ n\ n");

 for(i=0;i<2;i++)

 {

 for(j=0;j<2;j++)

 {

 printf(" %d ",c[i][j]);

 }

 printf(" \ n");

 }

getch();

}

Enter value of b[0][0] - > 1

Enter value of a[0][1] - > 2

Enter value of b[0][1] - > 2

Enter value of a[1][0] - > 3

Enter value of b[1][0] - > 3

[DOCUMENT TITLE] SHYAM N.CHAWDA

Enter value of a[1][1] - > 4

Enter value of b[1][1] - > 4

 2 4

 6 8

Multidimensional Arrays

C allows arrays of three or more dimensions.

The general form is:

type array_name[s1][s2][s3]éé[sn]

Ex.

int su rvey[3][5][12];

float table[5][4][5][3];

Survey is a three -dimensional array declared to contain 180 integer type elements.

Table is a four -dimensional array containing 300 elements of floating -point type.

If the survey represent a survey data of rainfall during the last three years from January to December in

five cities and if the first index denotes year, the second city and the third month, then the element

survey[1][2][9]

Denotes the rainfall in the month of October during the second year in city -3.

Three -dimensional array can be represented as a series of two -dimensional array.

String and Character Arrays

 A string is an array of characters.

 A string is nothing but an array of characters terminate d by ó\0ô.

 The way a group of integers can be stored in an integer array, similarly a group of characters can

be stored in a character array.

 Character arrays are many a time also called strings.

 Any group of characters defined between double quotation m arks is a constant string.

Operations performed on the character strings are:

- Reading and Writing strings.

- Combining strings together.

- Copying one string to another.

- Comparing strings for equality.

- Extracting a portion of a string.

Declaring and Initializing String Variables

[DOCUMENT TITLE] SHYAM N.CHAWDA

A string variable is any valid C variable name and is always declared as an array.

The general form for declaring string variable is:

char string_name[size];

Size determines the number of character in the string -name.

Example.

Char city[10];

Char name[30];

A string constant is a one -dimensional array of characters terminated by a null (ó\ 0ô).

Character arrays may be initialized at the time of declaration with following forms:

char city[7] = ñHL MCAò;

char city[7] = {óHô, óLô, ó ó, óMô, óCô, óAô, ó\0ô};

When the character array is initialized with the list of elements null character must be included

explicitly.

A character array can be initialized without specifying number of characters.

Example.

char string[]= {óBô, óAô, óCô, óDô, ó\0ô};

Reading and Writing Strings

For reading from the user there 3 options:

1. scanf ï 2 options

2. gets

3. getchar

scanf

Example #1: problem with simple scanf

main()

{

char name[25];

char quali[25];

clrscr();

 printf("Enter name ->");

 scanf("%s",name);

 printf("Enter Qualification ->");

 scanf("%s",quali);

[DOCUMENT TITLE] SHYAM N.CHAWDA

 printf("Name = %s and Quali = %s",name,quali);

getch();

}

Output:

Enter name ->shyam

Enter Qualification ->BCA MCA

Name = shyam and Quali = BCA *(problem)

Scanf reads until a whitespace character is found in a input or the maximum number of characters have

been read.

Scanf ignores MCA which is after space, so the solution is? %[^ \ n]

main()

{

char name[25];

char quali[25];

clrscr();

 printf("En ter name ->");

 scanf("%s",name);

 fflush(stdin);

 printf("Enter Qualification ->");

 scanf ("%[^ \ n]", quali);

 printf("Name = %s and Quali = %s",name,quali);

getch();

}

Output:

Enter name ->Shyam

Enter Qualification ->BCA MCA

Name = Shyam and Quali = BCA MCA

%[^ \ n] reads character upto Enter key

gets()

This function gets an entire string of characters from the user and stores them in an array.

To read multi word string gets function is better option.

main()

{

char name[25];

char quali[25];

[DOCUMENT TITLE] SHYAM N.CHAWDA

clrscr();

 printf("Enter name ->");

 gets(name);

 fflush(stdin);

 printf("Enter Qualification ->");

 gets(quali);

 printf("Name = %s and Quali = %s",name,quali);

getch();

}

Output:

Enter name ->shyam chawda

Enter Qualification ->BCA MCA

Name = shyam chawda and Quali = BCA MCA

getchar()

It reads single character from the input and place them into a character array.

An Entire line of text can be read and stored in an array. The reading is terminated when the newline

character(ó\nô) is entered and the null character is then instead at the end of the string.

main()

{

char name[25],quali[25],ch;

int i=0;

clrscr();

 printf("Enter name ->");

 gets(name);

 fflush(stdin);

 printf("Enter Qualification ->");

 do

 {

 ch=getchar();

 quali[i]=ch;

 i++;

 }while(ch!=' \ n');

 i=i -1;

 quali[i]=' \ 0'; óOtherwise print garbage

 printf("Name = %s and Quali = %s",name,quali);

getch();

[DOCUMENT TITLE] SHYAM N.CHAWDA

}

Output:

Enter name ->shyam chawda

Enter Qualification ->BCA MCA

Name = shyam chawda and Quali = BCA MCA

For writing from the user there 3 options:

1. printf

2. puts

3. putchar

printf

main()

{

char name[25];

clrscr();

printf("Enter name of the company ->");

 gets(name);

 printf(" \ nCompany Name = %s",name);

getch();

}

Output:

Enter name of the company ->Aspiration

Company Name = As piration

Examples of String operation

Example : Find occurrence of particular character

#include<stdio.h>

#include<conio.h>

#include<string.h>

main()

{

char name[25],find;

int len=0,i,cnt=0;

clrscr();

 printf("Enter name ->");

 gets(name);

 printf(" \ nEnter find ->");

 scanf("%c",&find);

 len=strlen(name);

[DOCUMENT TITLE] SHYAM N.CHAWDA

 for(i=0;i<len;i++)

 {

 if(name[i]==find)

 cnt++;

 }

 printf(" \ n\ nCnt = %d",cnt);

getch();

}

Enter name ->shyam sir

Enter find ->s

Cnt = 2

Example: Count upper or lowercase character in string

#include<stdio.h>

#include<conio.h>

#include<string.h>

main()

{

char name[25];

int i,j,len,cntu=0,cntl=0;

clrscr();

 printf("Enter name ->");

 gets(name);

 len=strlen(name);

 for(i=0;i<len;i++)

 {

 if(isupper(name[i]))

 cntu++;

 else if(islower(name[i]))

 cntl++;

 }

 printf("Uppercase -> %d Lowercase ->%d ",cntu,cntl);

getch();

}

Output:

Enter name ->sHyAm

Uppercase -> 2 Lowercase ->3

Basic String functions

[DOCUMENT TITLE] SHYAM N.CHAWDA

C library supports a large number of string -handing functions that can be used to carry out many of the

string manipulations.

Following table lists most commonly used functions.

You must have to include <string.h> library to use this string functions.

Function Action

strcat() concatenates two strings

strcmp() compares two strings

strcpy() copies one string over another

strlen() finds the length of a string

strcat()

The strcat function joins two strings together.

The general format is:

strcat(string1,string2);

When the function strcat is executed, string2 is appended to string1.

Null character of string1 is removed to do so and from that position string2 is appended to

string1.

The string2 remains unchanged.

strcmp()

The strcmp function compares two strings identified by the arguments and has a value 0 if they are equal.

If they are not, it has the numeric difference between the first nonmatching characters in the string.

The general format is:

strcmp(string1,string2);

Example.

strcmp(name1,name2);

 strcmp(name1,òJohnò);

strcmp(ñRomò,òRamò);

The major concern is know whether the strings are equal and if not, which is alphabetically above.

Example.

strcmp(ñtheirò,òthereò);

will return a value of ï9 which is difference between ASCII óiô and ASCII órô.

If the value is negative, string1 is alphabetically above string2.

[DOCUMENT TITLE] SHYAM N.CHAWDA

strcpy()

The general format is:

strcpy(string1,string2);

Function assigns contents of string2 to string1.

String2 may be character array variable or string constant.

Example.

strcpy(city,òahmedabadò);

strcpy(city1,city);

strlen() Function

This function counts and returns the number of characters in a string.

The general format:

n = strlen(string);

Where n is an integer variable, which receives the value of the length of the string.

The counting ends at the first null character.

Difference between getchar,getc,getch

Getchar () - It will accept a character from keyboard , displays immediately while typing. It works

differently from the other two. Whenever you press any key these are kept in Buffer. After hitting enter

the first character gets processed and it echoes on the screen.

Getch () - Reads a character and never waits for Enter key.Just gets processed after getting any key

pressed and it never echoes the charact er on screen which u pressed Normally we use it at the end of the

main ().

Getche () - It will accept a character from keyboard , displays it immediately and does not wait for

Enter key to be pressed for proceeding.It works same as getch() but it echoe s on screen.

