Radiation for local control.

Is Proton Therapy the panacea?

By Dr Francis Chin
Senior Consultant, Dept of Radiation Oncology, NCCS
What is Proton Therapy?

What is it good for?
What is Bragg Peak?

Depth Distribution of Energy

- **PHOTONS**
- **PROTONS**

Delivered radiation dose to tissues outside of the tumour during conventional radiation.

Bragg peak

- **Tumour**

Bethe-Bloch formula:

\[
\frac{\Delta E}{\Delta x} \sim -\frac{\rho}{v^2}
\]

Energy loss (\(\Delta E\)) per unit length (\(\Delta x\)):

- **Density**
- **Velocity**

Reduction of proton fluence: 1.2% /cm

Dose, including losses

Dose from nuclear reactions

Interaction with **electrons**

- **Ionization**
 - "no" deflection, small \(\Delta E\)
 - \(< \text{keV}\)
What is Bragg Peak?
What do we do currently?
Comparison of plans IMRT vs Proton

• Low dose that matters !!
What is Proton indicated for?

- Uveal melanoma
- Paediatrics cancer
- Ewings sarcoma
- Chondrosarcoma
- Base of skull tumors
The Promises and the Peril

The Promises:
- Lower upstream dose
- No downstream dose

The Peril:
- Finite Range !!!

Graph showing dose vs. depth for different types of beams:
- Photons 10MV
- Protons: Spread-out Bragg Peak
- Protons: Pristine Bragg Peak

Increased density indicated by a shaded area.
The rationale for proton radiation therapy for extra-carnial lesions

- High target doses of ~ 70 Gy(RBE)
- Targets close to or surrounded by radiation-sensitive structures
e.g. lung tissue
 heart, vessels
 kidneys, liver, intestines
 spinal cord
 peripheral nerves
 pediatric organs and tissues,
 entire growing and maturing body
- Large volumes, ⇒ need to reduce integral dose to compartments
- Irregularly shaped targets, making 3-D conformation challenging

Dose, Site, Size and Shape matter for the decision to use protons
Para-spinal / para-vertebral tumors

rare lesions (e.g. plasmocytoma, chondrosarcoma, chordoma, osteosarcoma, Ewing’s sarcoma in pediatric patients)

demanding treatment concepts

- surgical resection (often anatomic / functional restrictions for en bloc resection)
- chemo-resistance of some histologies
- need for high-dose radiotherapy to relatively large volumes, inherently situated very closely to sensitive structures
- outcome data after conventional radiotherapy often unsatisfactory due to dose limitations given by normal tissues
- particles and novel RT-technologies offer improved dose distributions
Para-spinal / para-vertebral tumors –
Extra-cranial chordomas treated with spot-scanning technology at PSI

The situation

- all targets adjacent to / surrounding spinal cord and/or nerves
- target doses >70 Gy(RBE)
- ~ 50% patients with substantial gross residual disease after surgery
- ~ 50% after surgical stabilization of the spine with Titanium implants

- consecutive difficulties:
 definition of targets & OARs
 precision of tissue densities
 calculation of beam range & dose distribution
Spot-scanning-based proton therapy for extracranial chordoma

• n = 40 (1999 – 2006)

• Median Follow-up: 43 months (24 – 91 months)

• Median total dose: 72 Gy (RBE) (59.4 – 75.2 Gy(RBE))

• 48% (19/40) gross residual disease

• 53% (21/40) surgical stabilization with Titanium implants
Spot-scanning-based proton therapy for extracranial chordoma

Complex Titanium implants

Dose distribution, spot scanning

Titanium implants, effects on CT

IMPT, dose reduction in nerve roots & cauda

SFUD
Spot-scanning-based proton therapy for extracranial chordoma

T-spine chordoma with extensive metal implants

Spot-scanning-based proton therapy for extra-cranial chordoma

Entire cohort (n=40):
- 62% OALC
- 80% OAS
- 57% QADSF
- 2 Grade III toxicities: 1 osteonecrosis, 1 soft tissue necrosis both after extensive surgeries
Proton therapy for extra-cranial sarcomas / chordomas –
Experiences at other institutions

Phase II Study of High-Dose Photon/Proton RT of Spine Sarcomas
DeLaney et al. MGH, IJROBP 2009; 74:372-9

n = 50 primary & recurrent TUs
(29 chordomas, 14 chondrosarcs.,
7 other)
GRD = 50%
med. F/U = 48 m
tot. dose = 77.4 Gy(RBE) to GD
= 70.2 to micr. dis (TU-bed)
= 50.4 to subclin.dis.;
some Y^{90} dural plaques
LF = 31% (5/16) with metal implant
= 12% (4/34) without (p=0.103)
toxicities = 3 sacral nerve injuries >Grade 2

5-y LC = 78%
RFS = 63%
OAS = 87%
Sacral chordomas: High-dose p+X-RT +/- surgery for primary vs. recurr. TU

\[n \] = 27 (16 primaries, 11 recurrent TUs)

Time period = 1982 - 2002

Min. F/U = 3 ys

Surg. + RT = 78% (21/27: 21/14 prim.; 1/7 recurr.)
RT only = 23% (6/27)

Tot. dose = 71 Gy(RBE) mean (prim.)
= 77 Gy(RBE) mean (recurr.)

Surg. + RT = LC 85.7% (12/14 prim.); 14% (1/7 recurr.)
RT alone = LC 91% (10/11 marg.+ prim), 0/5 marg.+ rec.

RT alone = LC 3/4 (≥ 73 Gy(RBE))
Proton therapy for extra-cranial sarcomas / chordomas –
Experiences at other institutions

Proton-based Radiotherapy for unresectable or incompletely resected osteosarcoma

n = 55 (33 = 60% extra-carnial)
Time period = 1983 – 2009
Med. F/U = 27 m (0 – 196)
p+ + X-RT = 58.2% protons as part of total radiation (11 – 100%)
+ surg. + CTX = 78% surgery; 91% CTX
Tot. dose = 68.4 Gy(RBE) mean

Outcome
3ys = LC 82%, DF=26%
5ys = LC 72%, DF=26%, DFS=65%, OAS=67%
Risk factors = ≥ Grade 2 histology, total treatment time
Toxicities = 30.1% Grade 3-4 late toxicity
Proton therapy for extra-cranial sarcomas / chordomas –
Experiences at other institutions

The role of radiotherapy in osteosarcoma
Schwarz R et al., Med. Center HH-Eppendorf; Cancer Treat Res. 2009;152:147-64

n = 100 (66 prim., 11 recurr., 23 mets.)
Med. F/U = 17.4 m (2.1 – 47.3)
TTT = all CTX – important for response to RT;
 98 X-RT, 2 p+, 2 IORT, 2 NT
 +/-biopsy / surgery
Dose = 55.8 Gy med. (30 – 120)
5-y LC = 30% all
 = 48% surgery + RT
 = 22% RT alone
 = 40% primary TU
 = 17% recurrence
5-y OAS = 41% biopsy
 = 36% whole group RT
 = 55% primary TU
 = 15% recurrence
Retroperitoneal sarcomas

The situation

- **Rare** tumors, 15% of all STS, incidence ~1600/y in U.S.
- **Primary therapy**: surgical resection, as complete as possible (en bloc ...)
- Controversial attitudes towards optimal treatment concepts and the role of RT
- **Targets** adjacent to, surrounding and/or surrounded by radiation-sensitive structures (kidney, liver, intestines, spinal cord)
- Adequate target doses (>70 Gy(RBE)) are often judged to be not applicable (in many cases and centers)
- **Local recurrence rates after surgery alone >40%**
- modern RT technologies and the use of particle beams offer new treatment options
Retroperitoneal sarcomas

Radiotherapy and extent of surgical resection in retroperitoneal soft-tissue sarcoma: multi-institutional analysis of 261 patients
Sampath S et al., Univ. of Utah, J Surg Oncol. 2010 Apr 1;101(5):345-50

n = 261
TTT = surgery +/- positive margins
71 (27%) plus RT
Dose med. = 50.2 Gy mostly post-op
F/U med. = 59 m
5-y CSS = 73% (Grade, histol., surg.margin predictive p<0.05)
5-y LFFS = 66%
= 79% with RT
= 64% without RT
Retroperitoneal sarcomas

Feasibility study of volumetric modulated arc therapy for the treatment of retroperitoneal sarcomas.
Llacer-Moscardo C et al., Montpellier, Radiat Oncol 2010 Sep 20;5:83

Dosimetric study
- 6 preoperative (A)
- 4 postoperative (B)
Prescribed dose
- 45 Gy for group A
- 50 Gy for group B
PTV=CTV+5 mm
CTV=GTV+10 mm or
the tumoral bed
RapidArc Eclipse
Normalization:
coverage of 99% of the
PTV by 95% of the dose
Retroperitoneal sarcomas

Proton-beam, intensity-modulated, and/or intraoperative electron radiation therapy combined with aggressive anterior surgical resection for retroperitoneal sarcomas

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All patients</th>
<th>Patients with primary tumors</th>
<th>Patients with local recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>28</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>External-beam radiation median dose, Gy (range)</td>
<td>50.0 (37.5–66.6)</td>
<td>50.0 (45–66.6)</td>
<td>50.2 (37.5–54)</td>
</tr>
<tr>
<td>Type of external-beam radiation, n (%)</td>
<td>10 (35.7%)</td>
<td>6 (30.0%)</td>
<td>4 (50.0%)</td>
</tr>
<tr>
<td>Proton beam</td>
<td>11 (39.3%)</td>
<td>8 (40%)</td>
<td>3 (37.5%)</td>
</tr>
<tr>
<td>Intensity modulated</td>
<td>7 (25%)</td>
<td>6 (30.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Both proton beam and intensity modulated</td>
<td>7 (25%)</td>
<td>6 (30.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Timing of external-beam radiation, n (%)</td>
<td>20 (71.4%)</td>
<td>14 (70%)</td>
<td>6 (75%)</td>
</tr>
<tr>
<td>Preoperative</td>
<td>6 (21.4%)</td>
<td>5 (25%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Postoperative</td>
<td>2 (7.1%)</td>
<td>1 (5.0%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>Intraoperative radiation</td>
<td>12 (42.9%)</td>
<td>8 (40%)</td>
<td>5 (62.5%)</td>
</tr>
<tr>
<td>Patients, n (%)</td>
<td>11 (6–15)</td>
<td>11.75 (7.5–15)</td>
<td>10 (6–12.5)</td>
</tr>
</tbody>
</table>
Retroperitoneal sarcomas

Proton-beam, intensity-modulated, and/or intraoperative electron radiation therapy combined with aggressive anterior surgical resection for retroperitoneal sarcomas

DVHs for IMRT & proton beams
- Liver
- Small bowel
- Stomach
- Left kidney
- Colon
- Spinal cord
Retroperitoneal sarcomas

Proton-beam, intensity-modulated, and/or intraoperative electron radiation therapy combined with aggressive anterior surgical resection for retroperitoneal sarcomas

F/U med. = 33 months
3-y LRFS = 90% (primaries), 30% (recurrent TUs)
Proton therapy for extra-cranial tumors – summary

- The oncological concept must be defined

- Oncological concepts are mainly determined by biological factors (e.g. histology, grade, local & systemic aggressiveness, surgical margins, primary vs. recurrence,)

- Expectations must be clear

- WHY Protons? – a serious medical question to a physical method

- Protons give geometrically superior dose distributions (in most cases)

- „Geometry“ needs to be translated into „biology“ (effect of dose to tissues)

- Significant improvements in LC, reduced toxicity and survival are hard to show

- Learning curves have to be considered and analyzed