

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

Pokkt SDK v3.0.0 for Windows Phone 8.1
Integration Guide

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

Contents:

1. Introduction
2. Installation
3. Code Integration
4. Video-ad Functionalities:
5. Debugging and Logging

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

1. Introduction:

Thank you for choosing Pokkt SDK for Windows Phone 8.1. This document contains all the
information that is needed by you to setup the SDK with your project.

There is a sample app provided along with the SDK. We will be referencing to this app during the
course of explanation in this document. It is suggested that you examine that app to understand
the following process in detail. We assume that you are using Visual Studio 2013.

You can download our sample app (PokktSampleApp) on your Windows Phone 8.1 device. Follow
the link mentioned below:

http://windowsphone.com/s?appid=be678e25-497a-4fbd-abf1-4a2fa66363de

OR

goo.gl/zub7kk

http://windowsphone.com/s?appid=be678e25-497a-4fbd-abf1-4a2fa66363de
http://goo.gl/zub7kk

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

2. Installation:

The SDK comes in a zip file: PokktSDK_ver3.0.0_AnyCPU_WindowsPhone8.1.zip

Once you extract it, you will find two folders inside:

a. SDK
b. SampleApp

The ‘SDK’ folder contains the main SDK library (PokktSDK.dll) along with supporting files. You will
be using these for your project. Add PokktSDK.dll in your project Reference. Maintain the other
resource as it is inside the SDK folder.

The ‘SampleApp’ folder contains the Visual Studio 2013 solution (.sln) and project for the sample
app, along with the source. We will be using this source code as reference.

Important: Please do not copy the code snippets from this DOC/PDF file as it may introduce
unwanted characters and space in your code. Instead always refer to the sample app source code
provided.

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

3. Code Integration:

Implementation Steps:

 Common:

1. For all invocation of Pokkt SDK functionalities, the developer will make use of
methods available in PokktManager class. This is a static class, thus, have static
methods only.

2. Make sure to call PokktManager.InitPokkt method before you make any other
method calls, except session related methods (PokktManager.StartSession or
EndSession).

3. Make note of PokktConfig class! This holds all the values required by the SDK
which you will be assigning to it. Then you will have to provide a properly filled
instance of PokktConfig for almost every API calls that you will be making.

4. In PokktConfig, you must assign the ApplicationId and SecurityKey. These values
are must for all type of integration.

5. If you are doing a server-to-server integration with Pokkt, you can also mention
ThirdPartyUserId in PokktConfig.

6. Apart from above mentioned values/parameters, you can assign additional
value/parameters based on your integration type.

7. During the course of development, you can call PokktManager.SetDebug(true) to
omit the SDK debug logs. Make sure to set it false for production build.

 Session:

1. You should call PokktManager.StartSession at the start of your application and
once only. You will have to provide your duly assigned PokktConfig object/instance
for this method.

2. You should call PokktManager.EndSession at the end of your application and once
only.

 Video:

1. These are video-ad related values/parameters that you can set:

a. AutoCacheVideo: You can set it to true/false to control video caching on
user’s device. If you set it to true, the video will be cached automatically.
Set it to false to disable auto-caching of video, but you have to manually call
PokktManager.CacheVideoCampaign to cache the available video campaign.
This is set to ‘true’ by default.

b. DefaultSkipTime: Set this value (in seconds) to make it compulsory for a

user to watch a video-ad for the given amount of time you have mentioned.
A user then, may be able to skip the remaining video-ad if there is a ‘skip’
button available. It is recommended to set it to 10 or less.

c. SkipEnabled: You can set it to true/false to show a ‘skip’ button over the
video. A user can click this to skip the video-ad playback. You can control
the time when you want to show it by setting above mentioned
DefaultSkipTime parameter.

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

d. BackButtonDisabled: You can disable the device’s back-button by setting

this false, while the video-ad playback is it progress.

e. CustomSkipMessage: If a video contains incentives, skipping it will present
the user with a confirmation box, by default this box contains a generic
message. You can change this message by setting this value to your desired
message. You can also change the label of the buttons which will appear on
the confirmation box by changing VideoSkipYesLabel and
VideoSkipNoLabel.

f. ScreenName: It has a default value ‘default’. It can be used by you to give

different screen-name for different locations in your app where you want to
show video-ads. You will control ad-targeting based on these screen-names
which should match exactly with the screen-names defined in the
Dashboard. Screen-names cannot contain whitespaces and only allowed
special characters are: ‘hyphen’ and ‘underscores’.

g. Incentivised: Set this value to ‘true/false’ to control the incentives that are

being presented to the user after watching a video-ad. Video Gratification
will happen only if you have set it to ‘true’.

2. You will need to listen to the events mentioned in VideoCampaignDelegate to get all
video-campaign related messages. This is discussed further is this document.

3. You can call PokktManager.IsVideoAvailable to check whether a video is available

locally for playback or not.

4. In order to play an available video, you have to call PokktManager.PlayVideo. You
will have to provide your duly filled PokktConfig instance along with a reference to
the Page control. This Page control will act as a parent container for the video.

 Optional Parameters:

1. PokktConfig also has the provision for developers to provide extra user data
available with them to Pokkt. Currently, the following data points are supported:

a. Name
b. Age
c. Sex
d. MobileNo
e. EmailAddress
f. Location
g. Birthday

h. MaritalStatus
i. FacebookId
j. TwitterHandle
k. Education
l. Nationality
m. Employment
n. MaturityRating

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

4. Video-ad Functionalities:

There are 7 events to manage the video caching and its playback, these are:
1. VideoClosedEvent
2. VideoDisplayedEvent
3. VideoSkippedEvent
4. VideoCompletedEvent
5. VideoGratifiedEvent
6. DownloadCompletedEvent
7. DownloadFailedEvent

Reference on how to consume them:

VideoCampaignDelegate.DownloadCompletedEvent += (float vc)
{
};

VideoCampaignDelegate.DownloadFailedEvent += (string message)
{
};

VideoCampaignDelegate.VideoDisplayedEvent += ()
{
};

VideoCampaignDelegate.VideoCompletedEvent += ()
{
};

VideoCampaignDelegate.VideoClosedEvent += (bool backPress)
{
};

VideoCampaignDelegate.VideoSkippedEvent += ()
{
};

VideoCampaignDelegate.VideoGratifiedEvent += (VideoResponse response)
{

string coins = response.Coins;
};

Remarks:

A video file is cached on user’s device. You can set the auto-caching option in the beginning, as mentioned
earlier in this document. In case of manual caching, call the following to start video caching:

PokktManager.CacheVideoCampaign(pokktConfig);

Before playing video or showing button to play video, Application should check whether video is cached or
not by calling the following:
 PokktManager.IsVideoAvailable();

You should listen to “DownloadCompletedEvent” to check whether download is completed or not, you can
show the play buttons once you receive this event.

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

Furthermore, Application can decide to play video as incentivised (user will be gratified after watching
complete video) or non- incentivised (user will not be gratified after watching complete video). You must
provide the screen-name parameter for it. Followings are the method calls to me made:

pokktConfig.Incentivised = true/false;
pokktConfig.ScreenName = "your_screen_name";

PokktManager.PlayVideo(pokktConfig, containerPage);

Next, you can listen to VideoGratifiedEvent to get the coins earned, if at all, by watching the last video.

POKKT SDK V3.0.0 FOR WINDOWS PHONE 8.1 INTEGRATION GUIDE

6. Debugging and Logging

You can enable the SDK logs by setting the debugging option to true anytime. Ref.:
 PokktManager.SetDebug(true/false);

You can use the following command to log some debug messages:
 Logger.Log("pokkt init...");

Export Log File:

In order to export the log file generated by the SDK, two utility methods have been provided:

1. PokktManager.ExportLogFile();
2. PokktManager.FinishExportingLogFile(file); // file is StorageFile

You have to use these two in continuation. The first method is straightforward. When you call the
PokktManager.ExportLogFile(), you are presented with a FileSavePicker message-box, select the
desired location where you want to save the file and confirm it. Once you confirm, you will arrive at your
application again and inside your app-entry class, override its OnActivated method and access the event-
args parameter of this method. You will find a StorageFile object inside it. Take this and pass it to the
second method mentioned above: PokktManager.FinishExportingLogFile(file). Code Snippet:

protected async override void OnActivated(IActivatedEventArgs args)
{

base.OnActivated(args);

try
{

FileSavePickerContinuationEventArgs fsArgs =
args as FileSavePickerContinuationEventArgs;

if (fsArgs != null)
{

StorageFile file = fsArgs.File;
await PokktManager.FinishExportingLogFileAsync(file);

}
}
catch (Exception e)
{

Logger.LogNoSave("failed to save file: " + e);
}

}

Please check the implementation inside the provided SampleApp for better understanding of it.

Clearing Log File:

You can call PokktManager.ClearLogFile() to clear the log file.

This concludes the integration documentation. It is highly suggested that you should check the sample app
that is provided to you to understand it better.

