POKKT SDK Integration Guide (v 7.4.0)

Corona

Overview 2
Project Configuration 2
Android 2
Dependencies 2
Manifest 3
Permissions Declarations 3

Activity Declaration 3

Service Declaration 4

i0S 4
Dependencies 4
Framework 4
Info.plist 4
Implementation Steps 6
SDK Configuration 6

Ad Types 8
Video 8
Interstitial 8

Banner 9

Ad Delegates 10
Pokkt ad player configuration 10
User Details 13
Pokkt Server Callback Params 13
Debugging 13
Analytics 14
Google Analytics 14

Flurry Analytics 14
MixPanel Analytics 14

Fabric Analytics 14

IAP(In App Purchase) 14

Overview

Thank you for choosing Pokkt SDK for Corona. This document contains all the information required to setup the
SDK with your project. We also support mediation for various third party networks. To know the supported third
party networks and their integration process go to mediation section.

Before implementing plugins it is mandatory to go through project configuration and implementation steps, as
these sections contain mandatory steps for basic SDK integration and are followed by every plugin.

minSdkVersion supported is 11.

ScreenName: This one parameter is accepted by almost all API’s of Pokkt SDK. This controls the placement of ads
and can be created on Pokkt Dashboard.

We will be referencing PokktAds Demo app provided with SDK during the course of explanation in this
document. We suggest you go through the sample app for better understanding.

Project Configuration

Android

In the package downloaded above you will find:
1. Docs:
Contains step wise step integration for SDK.
2. PokktCoronaDemo app code.
3. PokktCoronaDemo.apk:
Application package of Pokkt Corona Demo, so that you can directly install this apk on your device
and have a look how our SDK works instead of compiling the source code.
4. SDK+ Plugin:
a. JAR
® PokktSDK_v7.4.0.jar
o pokktsdk360ext.jar
e PAPCorona.jar
b. Dependencies
e Android-support-v4.jar
® google-play-services.jar

minSdkVersion supported is 11.

Dependencies

Extract the provided file “corona-plugin-pokkt.zip” into a directory.

We expect Google play services integrated in project, although it is optional but we recommend you to
integrate it, as it is required to fetch AdvertisingID for device,which is useful to deliver targeted
advertising to Android users.

Manifest

Permissions Declarations

We have already added the following mandatory permissions to the manifest via plugin.xml

1. Mandatory permissions.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

e android.permission.INTERNET = Required for SDK communication with server.
® android.permission.ACCESS_NETWORK_STATE = Required to detect changes in network, like if WIFI is
available or not.

2. Optional permissions. We have commented out these in plugin.xml. Please uncomment those for better
ad delivery and ad experience.

<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_CALENDAR" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.CALL_PHONE" />
<uses-permission android:name="android.permission.SEND_SMS" />
<uses-permission android:name="android.permission.VIBRATE" />

e android.permission.WAKE_LOCK = Required to prevent device from going into the sleep mode during
video play.

e android.permission.WRITE_EXTERNAL_STORAGE = Required to store media files related to ads in external
SD card, if not provided we will use app cache folder to store media files, which will result in unnecessary
increase in application’s size. It is recommended to ask for this permission as low end devices generally
have less internal memory available.

e android.permission.WRITE_CALENDAR = Some Ads create events in calendar.

e android.permission.ACCESS_FINE_LOCATION = Some Ads show content based on user’s location

e android.permission.CALL_PHONE = Some Ads are interactive and they provide you a way to call directly
from the content.

e android.permission.SEND_SMS = Some Ads are interactive and they provide you a way to send message.

e android.permission.VIBRATE = Some Ads provide haptic feedback, so as to maintain their behavior
we need this permission

Activity Declaration

We have already added the following activity in your AndroidManifest for Pokkt SDK integration via plugin.xml

<activity
android:name="com.pokkt.sdk.PokktAdActivity"
android:configChanges="keyboard|keyboardHidden|navigation|
orientation|screenLayout|uiMode|screenSize|smallestScreenSize"
android:hardwareAccelerated="true"
android:label="Pokkt"

android:screenOrientation="1andscape"
android:windowSoftInputMode="stateAlwaysHidden|adjustUnspecified" />
You can change the android:screenOrientation="landscape" to of your choice, the way you want to display the
ads.

Service Declaration

We have already added the following service in your AndroidManifest for receiving InApp notifications. How to set
up InApp notifications see “Pokkt Dashboard” document.

<service
android:name="com.pokkt.sdk.notification.NotificationService"
android:exported="false"
android:label="PokktNotificationService" />

i0S

In the package downloaded above you will find:
1. Docs:
Contains documentations for step wise step integration for SDK.
2. PokktSDK_v7.4.0:
a. libPokktSDK.a
b. Headers

Dependencies

e Extract the provided file “corona-plugin-pokkt.zip” into a directory. Link the pokkt library in the xcode
project.

Framework

CoreData.framework
Foundation.framework
MediaPlayer.framework
SystemConfiguration.framework
UIKit.framework
CoreTelephony.framework
EventKit.framework
AdSupport.framework
CoreGraphics.framework
CoreMotion.framework
MessageUI. framework
EventKitUI. framework
CorelLocation.framework
AVFoundation.framework
libc++.tbd

Info.plist

Add the below exceptions to your application info.plist.

<key>NSAppTransportSecurity</key>

<dict>

<key>NSExceptionDomains</key>

<dict>

<key>pokkt.com</key>
<dict>

<key>NSIncludesSubdomains</key>

<true/>

<key>NSExceptionAllowsInsecureHTTPLoads</key>

<true/>

<key>NSExceptionRequiresForwardSecrecy</key>

<false/>

<key>NSExceptionMinimumTLSVersion</key>
<string>TLSv1.2</string>
<key>NSThirdPartyExceptionAllowsInsecureHTTPLoads</key>
<false/>
<key>NSThirdPartyExceptionRequiresForwardSecrecy</key>
<true/>
<key>NSThirdPartyExceptionMinimumTLSVersion</key>
<string>TLSv1.2</string>
<key>NSRequiresCertificateTransparency</key>

<false/>

</dict>
<key>cloudfront.net</key>
<dict>

<key>NSIncludesSubdomains</key>

<true/>

<key>NSExceptionAllowsInsecureHTTPLoads</key>

<true/>

<key>NSExceptionRequiresForwardSecrecy</key>

<false/>

<key>NSExceptionMinimumTLSVersion</key>
<string>TLSv1.2</string>
<key>NSThirdPartyExceptionAllowsInsecureHTTPLoads</key>
<false/>
<key>NSThirdPartyExceptionRequiresForwardSecrecy</key>
<true/>
<key>NSThirdPartyExceptionMinimumTLSVersion</key>
<string>TLSv1.2</string>
<key>NSRequiresCertificateTransparency</key>

<false/>

</dict>
</dict> </dict>

Implementation Steps

SDK Configuration

1. For all invocation of Pokkt SDK developer will make use of methods available in pokkt.plugin using
PokktNativeExtension class. Android Plugin LuaLoader will have changes as below :

//This corresponds to the event name, e.g. [Lua] event.name

private static final String POKKT_EVENT_NAME = "pluginpokktevent";
//Pokkt plugin

PokktNativeExtension pokktNativeExtension = new PokktNativeExtension();

//Implements the library.init() Lua function.
public int init(LuaState L) {
int listenerIndex = 1;
if (CoronalLua.islListener(L, listenerIndex, POKKT_EVENT_NAME)) {
fListener = CoronalLua.newRef(L, listenerIndex);
pokktNativeExtension.setListenerIndex(fListener);

}

return 0;
}
@Override

public int invoke(LuaState L) {
// Register this plugin into Lua with the following functions.
NamedJavaFunction[] luaFunctions = new NamedJavaFunction[]{
new plugin.pokkt.Lualoader.InitWrapper(), };
luaFunctions = pokktNativeExtension.addPokktNamedFunctions(luaFunctions);
String libName = L.toString(1);
L.register(libName, luaFunctions);

//1 indicates that Lua require() function will return above Lua library.
return 1;

2. Set Application Id and Security key in Pokkt SDK. You can get it from Pokkt dashboard from your account.
These are unique per app registered.

local pokktlibrary = require "plugin.pokkt"

local pokktConfigJson = {
["appId"] = "<Pokkt Application ID>",
["securityKey"] = <Pokkt Security Key>"

local encoded = json.encode(pokktConfigJson)
pokktlibrary.NotifyPokkt("setPokktConfig", encoded)

3. Set GDPR consent in Pokkt SDK. This must be called before calling any ad related API.
Developers/Publishers must get the consent from user. For more information on GDPR please refer
https://www.eugdpr.org/ and https://www.eugdpr.org/gdpr-fags.html. This API can again be used by
publishers to revoke the consent. If this APl is not called or invalid data provided then SDK will access the
users personal data for ad targeting.

local t = {
["GDPRConsentAvailable"] = <“true/false”>,
["GDPRApplicable"] = <“true/false”>

}

local encoded = json.encode(t)
pokktlibrary.NotifyPokkt("setDataAccessConsent", encoded)
--GDPRConsentAvailable true if GDPR is applicable.

--GDPRConsentAvailable true if user has given consent to use personal details
for ad targeting.

4. If you are using server to server integration with Pokkt, you can also set Third Party Userld in PokktAds.

pokktlibrary.NotifyPokkt("setThirdPartyUserId", "<unique user id>")

5. When your application is under development and if you want to see Pokkt logs and other informatory
messages, you can enable it by setting setDebug to true. Make sure to disable debugging before release.

pokktlibrary.NotifyPokkt("Debugging_shouldDebug", "<true/false>")

https://www.eugdpr.org/
https://www.eugdpr.org/gdpr-faqs.html

Ad Types

Video

e Video ad can be rewarded or non-rewarded. You can either cache the ad in advance or directly call show
for it.

e We suggest you to cache the ad in advance so as to give seamless play behaviour, In other case it will
stream the video which may lead to unnecessary buffering delays depending on the network connection.

1. To cache rewarded ad call:

pokktlibrary.NotifyPokkt("VideoAd_cacheRewarded", "<ScreenName>")

2. To show rewarded ad call:

pokktlibrary.NotifyPokkt("VideoAd_showRewarded", "<ScreenName>")

3. To cache non-rewarded ad call:

pokktlibrary.NotifyPokkt("VideoAd_cacheNonRewarded", "<ScreenName>")

4. To show non-rewarded ad call:

pokktlibrary.NotifyPokkt("VideoAd_showNonRewarded", "<ScreenName>")

5. To check if video ad is cached:

local jsondata = {
["screenName"]
["isRewarded"]

<ScreenName>",
<true/false>

}

local encoded = json.encode(jsondata)
local isVideoCached = pokktlibrary.NotifyPokkt("VideoAd_isAdCached", encoded)

Interstitial

1. To cache rewarded ad call:

pokktlibrary.NotifyPokkt("Interstitial_cacheRewarded", "<ScreenName>")

2. Toshow rewarded ad call:

pokktlibrary.NotifyPokkt("Interstitial_showRewarded", "<ScreenName>")

3. To cache non-rewarded ad call:

pokktlibrary.NotifyPokkt("Interstitial_cacheNonRewarded", "<ScreenName>")

4. To show non-rewarded ad call:

pokktlibrary.NotifyPokkt("Interstitial_showNonRewarded", "<ScreenName>")

5. To check if interstitial ad is cached:

local jsondata = {
["screenName"]
["isRewarded"]

screenEditText.text,
true

}

local encoded = json.encode(jsondata)
local isAdCached = pokktlibrary.NotifyPokkt("Interstitial_isAdCached", encoded)
infoText.text = "Interstitial Cached : "..tostring(isAdCached)

Banner

e Load banner

local jsondata = {
["screenName"] = “<screenName>",
["bannerPosition"] = "8"

local encoded = json.encode(jsondata)
pokktlibrary.NotifyPokkt("Banner_loadBanner", encoded)

® Banner position values can be

o TOP_LEFT="1"
TOP_CENTER ="2"
TOP_RIGHT = "3"
MIDDLE_LEFT ="4"
MIDDLE_CENTER ="5"
MIDDLE_RIGHT ="6"
BOTTOM_LEFT ="7"
BOTTOM_CENTER ="8"
BOTTOM_RIGHT ="9"

o 0O 0O 0O O 0o O o

e You can remove Banner using:

pokktlibrary.NotifyPokkt("Banner_destroyBanner", “<screenName>")

Ad Delegates

Ad delegates are optional, but we suggest to implement them as it will help you to keep track of the status of your
ad request.

local function listener(event)
print("Received event from Pokkt Library plugin (" .. event.name .. "): ",
event.params)
end
pokktlibrary.init(listener)

Pokkt ad player configuration

Pokkt Ad player works the way App is configured at Pokkt dashboard, but we provide a way to override those
settings using PokktAdPlayerViewConfig.

Application should prefer configuration provided through code by developer or what’s configured for the app in
dashboard, can be controlled any time through the dashboard itself. If you want to make changes to this
configuration after your app distribution, you can contact Pokkt Team to do the same for your app through admin
console.

local adPlayerConfigJson = {
["backButtonDisabled"] = false,

["defaultSkipTime"] = 10,
["shouldAllowSkip"] = true,
["shouldAllowMute"] = true,

["shouldSkipConfirm"] = true,

["skipConfirmMessage"] = "Skipping this video will earn you NO rewards. Are you
sure?",

["skipConfirmYesLabel"] = "Yes",

["skipConfirmNoLabel"] = "No",

["skipTimerMessage"] = "You can skip video in ## seconds”,

["incentiveMessage"] = "more seconds only for your reward !",

["shouldCollectFeedback"] = true,

["isAudioEnabled"] = true

}

local encoded = json.encode(adPlayerConfigJson)
pokktlibrary.NotifyPokkt("setAdPlayerViewConfig", encoded)

Various setters for the properties that can be managed through this are:

1. Back button
Defines if user is allowed to close the Advertisement by clicking on back button or not.
Setter Name : setBackButtonDisabled(boolean backButtonDisabled)
Values:
True = Back button is disabled and user cannot close the Ad.
False = Back button is not disabled and user can close the Ad.
2. Default skip time

Defines the time after which user can skip the Ad.
Setter name: setDefaultSkipTime(int defaultSkipTime)
Values:
Any Integer value.
Default value is 10 seconds.
Should allow skip
Defines if user is allowed to skip the Ad or not.
Setter name: setShouldAllowSkip(boolean shouldAllowSkip)
Values:
True = User can skip Ad.
False = User can’t skip Ad.
Should allow mute
Defines if user is allowed to mute the Video Ad or not.
Setter name: setShouldAllowMute(boolean shouldAllowMute)
Values:
True = User can mute video Ad.
False = User can’t mute video Ad.
Should confirm skip
Defines if confirmation dialog is to be shown before skipping the Ad.
Setter name: ShouldConfirmSkip
Values:
True = Confirmation dialog will be shown before skipping the video.
False = Confirmation dialog will not be shown before skipping the video.
Skip confirmation message
Defines what confirmation message to be shown in skip dialog.
Setter name: setShouldSkipConfirm(boolean shouldSkipConfirm)
Values:
Any String message.
Default value is “Skipping this video will earn you NO rewards. Are you sure?”.
Affirmative label for skip dialog
Defines what should be the label for affirmative button in skip dialog.
Setter name: setSkipConfirmYesLabel(String skipConfirmYesLabel)
Values:
Any String message.
Default value is “Yes”.
Negative label for skip dialog
Defines what should be the label for affirmative button in skip dialog.
Setter name: setSkipConfirmNoLabel(String skipConfirmNoLabel)
Values:
Any String message.
Default value is “No”.
Skip timer message
Defines message to be shown before enabling skip button. Don’t forget to add placeholder “##” in your
custom message.
This placeholder is replaced by property “Default skip time” assigned above.
Setter name: setSkipTimerMessage(String skipTimerMessage)
Values:
Any String message.

10.

11.

12,

Default value is “You can skip video in ## seconds”
Incentive message
Defines message to be shown during video progress, that after what time user will be incentivised.
Setter name: setincentiveMessage(String incentiveMessage)
Values:
Any String message
Default value is “more seconds only for your reward !”
Should collect feedback
Defines message to be shown during video progress, that after what time user will be incentivised.
Property name: setShouldCollectFeedback
Values:
True = If you want to collect feedback from the user for the Ad.
False = If you don’t want to collect feedback from the user for the Ad.
Audio Enabled
Provides a medium to disable audio for video ad without user interaction.
Property name: setAudioEnabled
Values:
True = If you want to play audio for video ad.
False = If you don’t want to play audio for video ad.

User Details

For better targeting of ads you can also provide user details to our SDK using.

I}
~~

local userDetailsJson
["name"] = "”,
["age"] = ""
["sex"] =
["mob11eN0"] "y
["emailAddress"] = "",
["location"] = ""
["birthday"] = ""
["mar1ta1$tatus"] = ""
["facebookId"] = ""
["twitterHandle"] = "",
["education"] = "",
["nationality"] = ”",
["employment"] = ""
["maturityRating"] =

}

local encoded = json.encode(userDetailsJson)
pokktlibrary.NotifyPokkt("setUserDetails", encoded)

Pokkt Server Callback Params

Developer can set some values in POKKT SDK that they need to be sent to their server via POKKT Server callbacks.

local serverCallbackJson = {
["Network"] = "POKKT",
["Integration"] = "Corona"

}

local encoded = json.encode(serverCallbackJson)
pokktlibrary.NotifyPokkt("setCallbackExtraParams", encoded)

Debugging

Other than enabling debugging for Pokkt SDK, it can also be used to:
1. Exportlog
Export your log to your desired location, we generally have it in root directory of SD card, if permission for
external storage is provided and in cache folder otherwise.

pokktlibrary.NotifyPokkt("Debugging_exportLog")

2. Export log to cloud
You can also export log to cloud.

pokktlibrary.NotifyPokkt("Debugging_exportLogToCloud")

Analytics

We support various analytics in Pokkt SDK.
Below is mentioned how to enable various analytics with Pokkt SDK.

Google Analytics
Google analytics Id can be obtained from Google dashboard.

local analyticsJson = {
["selectedAnalyticsType"] = "GOOGLE_ANALYTICS",
["googleAnalyticsID"] = "<Google Analytics Id>"

local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails", encoded)

Flurry Analytics
Flurry application key can be obtained from Flurry dashboard.

local analyticsJson = {
["selectedAnalyticsType"] = "FLURRY",
["flurryApplicationKey"] = "<flurry Application Key>"
}
local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails", encoded)

MixPanel Analytics
MixPanel project token can be obtained from MixPanel dashboard.

local analyticsJson = {
["selectedAnalyticsType"] = "MIXPANEL",
["flurryApplicationKey"] = "<mixpanel project token>"

}

local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails", encoded)

Fabric Analytics
Analytics Id is not required in case of Fabric.

local analyticsJson = {
["selectedAnalyticsType"] = "FABRIC"
}

local encoded = json.encode(analyticsJson)
pokktlibrary.NotifyPokkt("Analytics_setAnalyticsDetails", encoded)

IAP(In App Purchase)

Call trackIAP to send any In App purchase information to Pokkt.

local iapJson = {
["productId"] = "<productId>",
["price"] = <price>,
["currencyCode"] = "<title>",
["title"] = "<productId>",
["purchaseData"”] = "<purchaseData>",

["description"] = "<description>",
["purchaseSignature"] = “<purchaseSignature>",
["purchaseStore"] = “<purchaseStore>"
}
local encoded = json.encode(iapJson)
pokktlibrary.NotifyPokkt("Analytics_trackIAP", encoded)

