
Theme 6: Intelligent Minutes of Meeting (MoM)

Introduction

Thank you for joining the Intelligent MoM webinar, being organized as part of the Radio – EY GDS Hackathon. In

this session, we give you a quick overview about the theme, the expectations and answer some of the common

questions that you may have.

Business overview

With everyone across the organization working remotely these days, virtual platforms are the new medium to

connect and interact. A lot of content and data is discussed during these calls, making transcription a difficult task.

There is a lot of manual effort required in preparation of a MoM – it should cover end-to-end content, identify/

list who has spoken on what topic/ subject, action points and other relevant details.

The input will be pre-recorded meeting audio/ video which will have multiple speakers, or participants. The input

data need to be processed and transcribed to text. And, now, the system should enable identification of the

speakers. If there are 10 speakers in that conversation, it should identify the statements, which are mentioned or

discussed by the speaker 1, and then the speaker 2, etc. So, it should tag accordingly and that is just one aspect.

Another aspect is to derive the action items from the discussion -who needs to do what and if possible, on what

time.

Technical implementation

A couple of points to note here:

● We should not take the number of speakers or the specific speaker ahead of time, as a hard-coded

feature. There should not be an assumption, like, only a specific set of users could be part of the

meeting. The number of speakers and the participants will be dynamic, and the tool should be flexible

enough to handle this. We are calling this out to prevent models being trained to work with only specific

voices. So, if you assume that only those speakers in the training set will be the participants, the

prediction will fail.

● The count can also be dynamically handled.

● The tool should also handle other realistic scenarios. Speakers might speak in an overlapping way,

speakers might have multiple accents, and there might also be background noise, as well as other

interruptions. So, ideally, those realistic scenarios should also be considered.

Implementation details

We expect the solution to be a web application, where an audio file can be uploaded. The audio source will not

be real time, it will be a pre-recorded audio file. The output shown by the web application would be the total

number of speakers and the time stamps of what they speak, i.e. the transcript. So, the hackers have the

flexibility to present this any way possible, in the user interface. Essentially, we need to generate who spoke

what and the matching time stamps.

So, each speaker will initially be a placeholder, such as speaker 1, speaker 2, and so on. The end user should have

the ability to manually tag each of the speakers. The artificial intelligence (AI) does not need to identify the

speaker. A human operator, or the end user would know that speaker 1 is Hari and speaker 2 is someone else

and so on. So, once they tag that, the transcripts just need to be updated. The speaker 1 needs to change to the

tag name, and so on and so forth. And the same needs to be updated in the meeting minutes as well. For

example, if the meeting minutes has a summary, that speaker 1 assigned a task to speaker 2 to be done on a

particular day, that speaker 1 and speaker 2 will get updated based on the tagging.

 Basically, that is the functional side implementation requirements.

Technology stack

1. Solution should ideally suit for deployment in Azure cloud platform:

• The tools can leverage open source/ custom libraries/ Application Program Interface (API) from

cloud platforms.

• Existing Software As A Service (SaaS)/ hosted solutions (Google Cloud Platform, Amazon Web

Service etc.) except Azure should not be leveraged.

2. Preferable technology stack is C#, .net and Python for Artificial Intelligence (AI)/ Machine Learning (ML).

You are also free to use libraries that are not licensed under Affero General Public License (AGPL).

It would be good if certain aspects, such as scalability, resilience, etc. can be considered as much as possible. And

the solution should be modular enough so that, at some point in time, this particular cloud based solutioning is

easily possible.

Q&A

1. What is the basic input and output?

Ans. The basic input is the audio file. And the output will be displayed on the web page, and the specific

output is just the transcript. There are two parts to the output:

1. Transcript: It is just the time stamp, the speaker ID, and what was spoken.

2. The generated minutes of the meeting.

3. Tagging: There is also one more optional step for the tagging – find and replace. If the system identifies

the speaker 1, 2, and 3, you can just select them and tag them by their names. You just replace wherever

those names appear, either in the meeting minutes or in the transcripts. So that is the output.

It should be a web application, where the user can interact and upload the audio. The core functionality should be

exposed as an API that the web application can consume. The results also would get displayed within the web

application.

2. Will they be able to get Azure service access, since it comes at a cost?

Ans. It is optional, participants will have to bear the cost themselves. We will not be providing any account for

that.

3. Is it necessary to provide any downloadable format for the transcription?

Ans. No, for now, it is just enough to display it on the web page, but ideally, that response should come at the

API. For example, a JSON that will be displayed on the web page so that you know we can leverage the API later

on.

4. On what basis will the project be evaluated?

Ans. We will test the application with pre-recorded audio file that we will build in-house. So, we will basically

check on all the functional aspects, like, how is the accuracy of the text, the speaker detection, how well it is able

to extract the meeting, summary, and action items. And, brownie points might be given for additional detection.

For e.g. detecting date/time for deadlines, meeting locations etc.

Overall, we will be taking a weighted sum of how well it performs on all these functionalities, and also on how

flexible the solution is amenable to scalable cloud hosting.

5. What will be the case when there are diverse languages in the meeting? What language the transcript

degenerated to? And for generating a summary do we need to use a language model or any API?

Ans. For now, we just need to support the English language. Both the input as well as the transcripts will be

in English. We are also expecting just English as the training Language model or API. The participants have

the flexibility to choose a language model/ API or even combination. The only restriction is that any model

you choose either should be built from scratch or open source. It should be able to be hosted on Azure

platform, so that essentially rules out anything coming from other competing clouds, like Google, or AWS.

But other than that, we expect open source, or custom model, or any Azure related API.

6. Is there any specification in terms of audio format?

Ans. Any commonly used audio format such as MP3 or WAV is fine. We don’t have any particular preference

for an audio format, as long as the functional checkbox is ticked. For the evaluation, we would also see, how

usable UI is on the usability for, and, how well the UI is designed, how usability tests, and so on, from a

design standpoint.

7. Will we get training data of the voice of each speaker?

Ans. They are expected to record their own sample audio that they can use for our model training, and so

on. But towards the end for evaluation, we will test the solution with the audio sample that we have created

internally. So, this sample will not be handed over initially, because, people might hard code around that,

just to prevent that. Participants do have the freedom to record their own audio samples. However, they

should ensure that the functional requirements are met. Initially, no other sample data would be provided.

8. Do we need to just identify different speakers, or do we need to identify the speaker's names as well?

Ans. There is no need to identify the specific speaker name. You can just say speaker 1, speaker 2, speaker 3

or add any other placeholder. The actual identification of the person will be done using manual tagging. For

example, the UI might provide a way for a human end user to tag, speaker 1 is so and so person, so that it

gets reflected across the meeting minutes and the transcripts.

9. For every upload, there will be a manual tag, or an algorithm should be stored, if tagged once.

Ans. For every upload, we expect manual tagging, but it is optional. If you don't tag, it will just be called

speaker 1, speaker 2, etc. You are not expected to save tags across meeting sessions since there is no

guarantee that the same speakers will come back.

10. What is the maximum number of speakers in a given session?

Ans. The solution should be able to scale based on underlying platform. For the demo, the constraints of the

demo device should be fine. However, if your laptop can handle only up to 5 speakers, that is okay. But if the

same solution gets scaled to a bigger hosting platform like a Cloud platform, ideally, it should be able to

scale, and more speakers can be added.

Disclaimer: This publication contains information in summary form and is therefore intended for general

guidance only. It is not intended to be a substitute for detailed research or the exercise of professional

judgment. Member firms of the global EY organization cannot accept responsibility for loss to any person

relying on this article.

