PHP - Introduction
PHP is a server scripting language, and a powerful tool for making dynamic and interactive Web pages.
[bookmark: _jubqz48ujvfv]What is PHP?
1. PHP is an acronym for "PHP: Hypertext Preprocessor"
2. PHP is a widely-used, open source scripting language
3. PHP scripts are executed on the server
4. PHP is free to download and use
[bookmark: _8tl7r6z9qbqh]What is a PHP File?
1. PHP files can contain text, HTML, CSS, JavaScript, and PHP code
2. PHP code is executed on the server, and the result is returned to the browser as plain HTML
3. PHP files have extension ".php"
[bookmark: _5byw3pd2gigr]What Can PHP Do?
1. PHP can generate dynamic page content
2. PHP can create, open, read, write, delete, and close files on the server
3. PHP can collect form data
4. PHP can send and receive cookies
5. PHP can add, delete, modify data in your database
6. PHP can be used to control user-access
7. PHP can encrypt data
With PHP you are not limited to output HTML. You can output images, PDF files, and even Flash movies. You can also output any text, such as XHTML and XML.
[bookmark: _x6w4j4jhv3z3]Why PHP?
1. PHP runs on various platforms (Windows, Linux, Unix, Mac OS X, etc.)
2. PHP is compatible with almost all servers used today (Apache, IIS, etc.)
3. PHP supports a wide range of databases
4. PHP is easy to learn and runs efficiently on the server side
[bookmark: _9i7naeunb23v]PHP Syntax
A PHP script is executed on the server, and the plain HTML result is sent back to the browser.
1. A PHP script can be placed anywhere in the document.
2. A PHP script starts with <?php and ends with ?>
3. The default file extension for PHP files is ".php".
Example:
[image:]
Note:
1. PHP statements end with a semicolon (;).
2. In PHP, keywords (e.g. if, else, while, echo, etc.), classes, functions, and user-defined functions are not case-sensitive.
In PHP, we can use either double slash (//) or hash (#) for single commented lines and /* and */ for the multiple commented lines.
[bookmark: _j4w7dbmze633]PHP Variables
In PHP, a variable starts with the $ sign, followed by the name of the variable.
A variable can have a short name (like x and y) or a more descriptive name (age, carname, total_volume).
Rules for PHP variables:
1. A variable starts with the $ sign, followed by the name of the variable
2. A variable name must start with a letter or the underscore character
3. A variable name cannot start with a number
4. A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)
5. Variable names are case-sensitive ($age and $AGE are two different variables)
The PHP echo statement is often used to output data to the screen.
Example:
[image:]

[bookmark: _d487dorreu8k]PHP is a Loosely Typed Language
1. PHP automatically associates a data type to the variable, depending on its value. Since the data types are not set in a strict sense, you can do things like adding a string to an integer without causing an error.
2. In PHP 7, type declarations were added. This gives an option to specify the data type expected when declaring a function, and by enabling the strict requirement, it will throw a "Fatal Error" on a type mismatch.
[bookmark: _ij5u8b61616l]PHP Variables Scope
In PHP, variables can be declared anywhere in the script.
The scope of a variable is the part of the script where the variable can be referenced/used.
PHP has three different variable scopes:
1. local
2. global
3. static
[bookmark: _yffpp56xfamw]Global and Local Scope
1. A variable declared outside a function has a GLOBAL SCOPE and can only be accessed outside a function
2. A variable declared within a function has a LOCAL SCOPE and can only be accessed within that function.
3. The global keyword is used to access a global variable from within a function.
[bookmark: _pbhxtpt4nysz]PHP Data Types
Variables can store data of different types, and different data types can do different things.
PHP supports the following data types:
1. String
2. Integer
3. Float (floating point numbers - also called double)
4. Boolean
5. Array
6. Object
7. NULL
8. Resource
[bookmark: _ocloucoj6se1]PHP String
A string is a sequence of characters, like "Hello world!".
A string can be any text inside quotes. You can use single or double quotes
[image:]
[bookmark: _4qu82xfyze0n]PHP Integer
An integer data type is a non-decimal number between -2,147,483,648 and 2,147,483,647.
Rules for integers:
· An integer must have at least one digit
· An integer must not have a decimal point
· An integer can be either positive or negative
· Integers can be specified in: decimal (base 10), hexadecimal (base 16), octal (base 8), or binary (base 2) notation
Example:
[image:]
[bookmark: _mol5ylg84sx3]PHP Float
A float (floating point number) is a number with a decimal point or a number in exponential form.
Example:
[image:]
[bookmark: _wmwbl05s27gw]PHP Boolean
A Boolean represents two possible states: TRUE or FALSE.
[bookmark: _wa5735g51wt2]PHP Array
An array stores multiple values in one single variable.
Example:
[image:]
[bookmark: _a76euknc7ue8]PHP Object
An object is a data type which stores data and information on how to process that data. In PHP, an object must be explicitly declared. First we must declare a class of object.
Example:
[image:]
[bookmark: _4sl70c7ti3zh]PHP NULL Value
Null is a special data type which can have only one value: NULL.
A variable of data type NULL is a variable that has no value assigned to it.
Example:
[image:]
[bookmark: _jm6i6qfzpj7x]PHP String methods
1. The PHP strlen() function returns the length of a string.
2. The PHP str_word_count() function counts the number of words in a string.
3. The PHP strrev() function reverses a string.
4. The PHP strpos() function searches for a specific text within a string. If a match is found, the function returns the character position of the first match. If no match is found, it will return FALSE.
5. The PHP str_replace() function replaces some characters with some other characters in a string.
[bookmark: _y2ag4dph4os8]PHP Math
PHP has a set of math functions that allows you to perform mathematical tasks on numbers.
1. The pi() function returns the value of PI
2. The min() and max() functions can be used to find the lowest or highest value in a list of arguments
3. The abs() function returns the absolute (positive) value of a number
4. The sqrt() function returns the square root of a number
5. The round() function rounds a floating-point number to its nearest integer
6. The rand() function generates a random number

[bookmark: _6shdam7bytuv]PHP Constants
1. A constant is an identifier (name) for a simple value. The value cannot be changed during the script.
2. A valid constant name starts with a letter or underscore (no $ sign before the constant name).
3. Note: Unlike variables, constants are automatically global across the entire script.
4. The define() function is used to create the constant values.
Example:
[image:]

[bookmark: _as8tsvyj93xl]PHP Operators
Operators are used to perform operations on variables and values.
PHP divides the operators in the following groups:
1. Arithmetic operators
2. Assignment operators
3. Comparison operators
4. Increment/Decrement operators
5. Logical operators
6. String operators
7. Array operators
8. Conditional assignment operators
[bookmark: _cdf2ik2oynau]PHP Arithmetic Operators
The PHP arithmetic operators are used with numeric values to perform common arithmetical operations, such as addition, subtraction, multiplication etc.
[image:]
[bookmark: _tszf07wulufg]PHP Assignment Operators
The PHP assignment operators are used with numeric values to write a value to a variable.
The basic assignment operator in PHP is "=". It means that the left operand gets set to the value of the assignment expression on the right.
[image:]
[bookmark: _25nnsohac5u]PHP Comparison Operators
The PHP comparison operators are used to compare two values (number or string):
[image:]
[bookmark: _asg9gnxc9t00]PHP Increment / Decrement Operators
The PHP increment operators are used to increment a variable's value.
The PHP decrement operators are used to decrement a variable's value.
[image:]
[bookmark: _qkd19vw7kkbj]PHP Logical Operators
The PHP logical operators are used to combine conditional statements.
[image:]
[bookmark: _l1nnln4ciua5]PHP String Operators
[bookmark: _74y35s1cdyxg]PHP has two operators that are specially designed for strings.
[image:]
[bookmark: _h6iuchc66yox]PHP Array Operators
The PHP array operators are used to compare arrays.
[image:]
[bookmark: _u7uh0137zr06]PHP Conditional Assignment Operators
The PHP conditional assignment operators are used to set a value depending on conditions:
[image:]

[bookmark: _oelgqmbnpfps]PHP Conditional Statements
Very often when you write code, you want to perform different actions for different conditions. You can use conditional statements in your code to do this.
In PHP we have the following conditional statements:
1. if statement - executes some code if one condition is true
2. if...else statement - executes some code if a condition is true and another code if that condition is false
3. if...elseif...else statement - executes different codes for more than two conditions
4. switch statement - selects one of many blocks of code to be executed
[bookmark: _x00bd9n7iuq9]PHP - The if Statement
The if statement executes some code if one condition is true.
[image:]
[bookmark: _61avwsj4o40g]PHP - The if...else Statement
The if...else statement executes some code if a condition is true and another code if that condition is false.
[image:]

[bookmark: _xxrke04xym2r]PHP - The if...elseif...else Statement
The if...elseif...else statement executes different codes for more than two conditions.
[image:]
[bookmark: _hpl8kyjf21jb]The PHP switch Statement
Use the switch statement to select one of many blocks of code to be executed.
[image:]
[bookmark: _5ctnm961smqb]PHP Loops
Often when you write code, you want the same block of code to run over and over again a certain number of times. So, instead of adding several almost equal code-lines in a script, we can use loops.
Loops are used to execute the same block of code again and again, as long as a certain condition is true.
In PHP, we have the following loop types:
· while - loops through a block of code as long as the specified condition is true
· do...while - loops through a block of code once, and then repeats the loop as long as the specified condition is true
· for - loops through a block of code a specified number of times
· foreach - loops through a block of code for each element in an array
[bookmark: _l5ehoigpj5vu]The PHP while Loop
The while loop executes a block of code as long as the specified condition is true.
[image:]
The output of the above code is as follows:
[image:]
[bookmark: _m3xqudrp1qs4]Example Explained
1. $x = 1; - Initialize the loop counter ($x), and set the start value to 1
2. $x <= 5 - Continue the loop as long as $x is less than or equal to 5
3. $x++; - Increase the loop counter value by 1 for each iteration
[bookmark: _e4xk6dmndfco]The PHP do...while Loop
The do...while loop will always execute the block of code once, it will then check the condition, and repeat the loop while the specified condition is true.
[image:]
The output of the above code is as follows:
[image:]
[bookmark: _nbl0ozji48xv]The PHP for Loop
The for loop is used when you know in advance how many times the script should run.
[image:]
The output of the above code is as follows:
[image:]
[bookmark: _gaaxcvq1tfta]Example Explained
· $x = 0; - Initialize the loop counter ($x), and set the start value to 0
· $x <= 10; - Continue the loop as long as $x is less than or equal to 10
· $x++ - Increase the loop counter value by 1 for each iteration
[bookmark: _omcqmo5730sc]The PHP foreach Loop
The foreach loop works only on arrays, and is used to loop through each key/value pair in an array.
[image:]
The output of the above code is as follows:
[image:]
[bookmark: _8pr61therikz]PHP Break
You have already seen the break statement used in an earlier chapter of this tutorial. It was used to "jump out" of a switch statement.
The break statement can also be used to jump out of a loop.
[bookmark: _l2aff9g1uvxm]PHP Continue
The continue statement breaks one iteration (in the loop), if a specified condition occurs, and continues with the next iteration in the loop.

[bookmark: _72btgfib226g]PHP Functions
[bookmark: _rczskbyp022k]PHP User Defined Functions
Besides the built-in PHP functions, it is possible to create your own functions.
1. A function is a block of statements that can be used repeatedly in a program.
2. A function will not execute automatically when a page loads.
3. A function will be executed by a call to the function.
[bookmark: _36j4umm7i1p9]Create a User Defined Function in PHP
A user-defined function declaration starts with the word function
Example:
[image:]
[bookmark: _nbt3t82x1ru0]PHP Function Arguments
Information can be passed to functions through arguments. An argument is just like a variable.
Arguments are specified after the function name, inside the parentheses. You can add as many arguments as you want, just separate them with a comma.
The following example has a function with one argument ($fname). When the familyName() function is called, we also pass along a name (e.g. Jani), and the name is used inside the function, which outputs several different first names, but an equal last name:
[image:]
The output for the above code is as follows:
[image:]
[bookmark: _xd2lcn9roxjk]PHP Default Argument Value
The following example shows how to use a default parameter. If we call the function setHeight() without arguments it takes the default value as argument:
[image:]
The output of the above code will be as follows:
[image:]
[bookmark: _nym3y6rzd8df]PHP Functions - Returning values
To let a function return a value, use the return statement:
[image:]
The output of the above code is as follows:
[image:]
[bookmark: _s0fcfmfxjh7n]PHP Return Type Declarations
PHP 7 also supports Type Declarations for the return statement. Like with the type declaration for function arguments, by enabling the strict requirement, it will throw a "Fatal Error" on a type mismatch.
To declare a type for the function return, add a colon (:) and the type right before the opening curly ({)bracket when declaring the function.
In the following example we specify the return type for the function:
[image:]
[bookmark: _pyswpem2g58i]Passing Arguments by Reference
In PHP, arguments are usually passed by value, which means that a copy of the value is used in the function and the variable that was passed into the function cannot be changed.
When a function argument is passed by reference, changes to the argument also change the variable that was passed in. To turn a function argument into a reference, the & operator is used:
[image:]
[bookmark: _xpnxellfese]PHP Arrays
An array is a special variable, which can hold more than one value at a time.
In PHP, the array() function is used to create an array.
In PHP, there are three types of arrays:
1. Indexed arrays - Arrays with a numeric index
2. Associative arrays - Arrays with named keys
3. Multidimensional arrays - Arrays containing one or more arrays
[bookmark: _3cuwtzi7z796]PHP Indexed Arrays
The following example creates an indexed array named $cars, assigns three elements to it, and then prints a text containing the array values:
[image:]

[bookmark: _qzhaytulgbwk]PHP Associative Arrays
Associative arrays are arrays that use named keys that you assign to them.
Example:
[image:]
[bookmark: _268hii86drrf]PHP - Multidimensional Arrays
A multidimensional array is an array containing one or more arrays.
Example:
[image:]
The output of the above code is as follows:
[image:]
[bookmark: _xzlxrp9pjcr7]PHP - Sort Functions For Arrays
1. sort() - sort arrays in ascending order
2. rsort() - sort arrays in descending order
3. asort() - sort associative arrays in ascending order, according to the value
4. ksort() - sort associative arrays in ascending order, according to the key
5. arsort() - sort associative arrays in descending order, according to the value
6. krsort() - sort associative arrays in descending order, according to the key.
[bookmark: _tkexfne1lc52]PHP Global Variables - Superglobals
Some predefined variables in PHP are "superglobals", which means that they are always accessible, regardless of scope - and you can access them from any function, class or file without having to do anything special.
The PHP superglobal variables are:
1. $GLOBALS
2. $_SERVER
3. $_REQUEST
4. $_POST
5. $_GET
6. $_FILES
7. $_ENV
8. $_COOKIE
9. $_SESSION
[bookmark: _3m1232txhmho]PHP $GLOBALS
$GLOBALS is a PHP super global variable which is used to access global variables from anywhere in the PHP script (also from within functions or methods).
[bookmark: _hyx4kfw6ipcs]PHP $_SERVER
$_SERVER is a PHP super global variable which holds information about headers, paths, and script locations.
[bookmark: _kqvbxhl86l72]PHP $_REQUEST
PHP $_REQUEST is a PHP super global variable which is used to collect data after submitting an HTML form.
[bookmark: _4nizt5wxd94c]PHP $_POST
PHP $_POST is a PHP super global variable which is used to collect form data after submitting an HTML form with method="post". $_POST is also widely used to pass variables.
[bookmark: _i85w3hlsnuox]PHP $_GET
PHP $_GET is a PHP super global variable which is used to collect form data after submitting an HTML form with method="get".

[bookmark: _bky6ydvtx391]PHP Regular Expressions
A regular expression is a sequence of characters that forms a search pattern. When you search for data in a text, you can use this search pattern to describe what you are searching for.
A regular expression can be a single character, or a more complicated pattern.
Regular expressions can be used to perform all types of text search and text replace operations.
[bookmark: _zca0de347ss6]Regular Expression Functions
PHP provides a variety of functions that allow you to use regular expressions. The preg_match(), preg_match_all() and preg_replace() functions are some of the most commonly used ones:
[image:]
[bookmark: _t5599amqmnba]Regular Expression Modifiers
Modifiers can change how a search is performed.
[image:]
[bookmark: _4b07rxgq1svn]Regular Expression Patterns
Brackets are used to find a range of characters:
[image:]
[bookmark: _z53y5uac7z84]Metacharacters
Metacharacters are characters with a special meaning:
[image:]
[bookmark: _89i6xnflpkle]Quantifiers
Quantifiers define quantities:
[image:]
[bookmark: _527fm5cbxztl]Grouping
You can use parentheses () to apply quantifiers to entire patterns. They also can be used to select parts of the pattern to be used as a match.
Example:
[image:]
[bookmark: _oa15jv2ieh24]
[bookmark: _3p0xp17y3om1]PHP Forms
[bookmark: _l5shits6oa7p]PHP Form Handling
The PHP superglobals $_GET and $_POST are used to collect form-data.
Consider the following HTML code on forms:
[image:]
The output of the above code is as follows:
[image:]
When the user fills out the form above and clicks the submit button, the form data is sent for processing to a PHP file named "welcome.php". The form data is sent with the HTTP POST method.
[bookmark: _u6gvvkokfiuj]PHP Form Validation
[bookmark: _m8v3cq221ari]The Form Element
The HTML code of the form looks like this:
[image:]
[bookmark: _4s8yukv6u0xe]PHP Form Security
The $_SERVER["PHP_SELF"] variable can be used by hackers!
If PHP_SELF is used in your page then a user can enter a slash (/) and then some Cross Site Scripting (XSS) commands to execute.
[bookmark: _9hmbe5fzdf14]How To Avoid $_SERVER["PHP_SELF"] Exploits?
$_SERVER["PHP_SELF"] exploits can be avoided by using the htmlspecialchars() function.
The form code should look like this:
[image:]
[bookmark: _w66vogkzbbii]Validate Form Data With PHP
The first thing we will do is to pass all variables through PHP's htmlspecialchars() function.
When we use the htmlspecialchars() function; then if a user tries to submit the following in a text field:
<script>location.href('http://www.hacked.com')</script>
- this would not be executed, because it would be saved as HTML escaped code, like this:
<script>location.href('http://www.hacked.com')</script>
The code is now safe to be displayed on a page or inside an e-mail.
We will also do two more things when the user submits the form:
1. Strip unnecessary characters (extra space, tab, newline) from the user input data (with the PHP trim() function)
2. Remove backslashes (\) from the user input data (with the PHP stripslashes() function)
The next step is to create a function that will do all the checking for us (which is much more convenient than writing the same code over and over again).
We will name the function test_input().
Now, we can check each $_POST variable with the test_input() function, and the script looks like this:
[image:]

[bookmark: _ijy3h61eoihc]PHP Date and Time
The PHP date() function is used to format a date and/or a time.
The PHP date() function formats a timestamp to a more readable date and time.
[bookmark: _bn5p3qp2dpk9]Get a Date
The required format parameter of the date() function specifies how to format the date (or time).
Here are some characters that are commonly used for dates:
1. d - Represents the day of the month (01 to 31)
2. m - Represents a month (01 to 12)
3. Y - Represents a year (in four digits)
4. l (lowercase 'L') - Represents the day of the week
Other characters, like"/", ".", or "-" can also be inserted between the characters to add additional formatting.
[image:]
[bookmark: _7kvfvwwvooi7]Get a Time
Here are some characters that are commonly used for times:
1. H - 24-hour format of an hour (00 to 23)
2. h - 12-hour format of an hour with leading zeros (01 to 12)
3. i - Minutes with leading zeros (00 to 59)
4. s - Seconds with leading zeros (00 to 59)
5. a - Lowercase Ante meridiem and Post meridiem (am or pm)
The example below outputs the current time in the specified format:
[image:]
[bookmark: _4horol485k5r]Get Your Time Zone
If the time you got back from the code is not correct, it's probably because your server is in another country or set up for a different timezone.
So, if you need the time to be correct according to a specific location, you can set the timezone you want to use.
[bookmark: _2s3mbzhtigxn]Create a Date With mktime()
The optional timestamp parameter in the date() function specifies a timestamp. If omitted, the current date and time will be used (as in the examples above).
The PHP mktime() function returns the Unix timestamp for a date. The Unix timestamp contains the number of seconds between the Unix Epoch (January 1 1970 00:00:00 GMT) and the time specified.
[bookmark: _qoi65lac9q0l]Create a Date From a String With strtotime()
The PHP strtotime() function is used to convert a human readable date string into a Unix timestamp (the number of seconds since January 1 1970 00:00:00 GMT).

[bookmark: _fs1jyftfiufv]PHP include and require Statements
It is possible to insert the content of one PHP file into another PHP file (before the server executes it), with the include or require statement.
The include and require statements are identical, except upon failure:
1. require will produce a fatal error (E_COMPILE_ERROR) and stop the script
2. include will only produce a warning (E_WARNING) and the script will continue
So, if you want the execution to go on and show users the output, even if the include file is missing, use the include statement. Otherwise, in case of FrameWork, CMS, or a complex PHP application coding, always use the require statement to include a key file to the flow of execution. This will help avoid compromising your application's security and integrity, just in-case one key file is accidentally missing.
Including files saves a lot of work. This means that you can create a standard header, footer, or menu file for all your web pages. Then, when the header needs to be updated, you can only update the header include file.
[bookmark: _fm9xddeq4bm1]PHP File Handling
[bookmark: _v2erpq66polb]PHP readfile() Function
The readfile() function reads a file and writes it to the output buffer.
Assume we have a text file called "webdictionary.txt", stored on the server, that looks like this:
[image:]
[image:]
The output of the above code is as follows:
[image:]
[bookmark: _wfb8zj90p8qt]PHP Open File - fopen()
A better method to open files is with the fopen() function. This function gives you more options than the readfile() function.
The file may be opened in one of the following modes:
[image:]
[bookmark: _78365siq979]PHP Read File - fread()
The fread() function reads from an open file.
The first parameter of fread() contains the name of the file to read from and the second parameter specifies the maximum number of bytes to read.
[bookmark: _u7jpac2nj9xo]PHP Close File - fclose()
The fclose() function is used to close an open file.
[bookmark: _54d5i4f1r94f]PHP Read Single Line - fgets()
The fgets() function is used to read a single line from a file.
[bookmark: _r4cs8j14nhh]PHP Check End-Of-File - feof()
The feof() function checks if the "end-of-file" (EOF) has been reached.
The feof() function is useful for looping through data of unknown length.

[bookmark: _31xch4xndiwg]PHP Read Single Character - fgetc()
The fgetc() function is used to read a single character from a file.
[bookmark: _lwbcgutk6poo]PHP Create File - fopen()
The fopen() function is also used to create a file. Maybe a little confusing, but in PHP, a file is created using the same function used to open files.
If you use fopen() on a file that does not exist, it will create it, given that the file is opened for writing (w) or appending (a).
[bookmark: _y83l8s5s4g3h]PHP File Permissions
If you are having errors when trying to get this code to run, check that you have granted your PHP file access to write information to the hard drive.

[bookmark: _l3clv9150561]PHP Write to File - fwrite()
The fwrite() function is used to write to a file.
The first parameter of fwrite() contains the name of the file to write to and the second parameter is the string to be written.
The example below writes a couple of names into a new file called "newfile.txt":
[image:]
Notice that we wrote to the file "newfile.txt" twice. Each time we wrote to the file we sent the string $txt that first contained "John Doe" and second contained "Jane Doe". After we finished writing, we closed the file using the fclose() function.
If we open the "newfile.txt" file it would look like this:
[image:]
[bookmark: _ej15g3z2ufey]PHP File Upload
[bookmark: _i7hjkhiaazvq]Configure The "php.ini" File
First, ensure that PHP is configured to allow file uploads.
In your "php.ini" file, search for the file_uploads directive, and set it to On.

[bookmark: _g55jlyakk0w7]Create The Upload File PHP Script
The "upload.php" file contains the code for uploading a file:
[image:]
PHP script explained:
1. $target_dir = "uploads/" - specifies the directory where the file is going to be placed
2. $target_file specifies the path of the file to be uploaded
3. $uploadOk=1 is not used yet (will be used later)
4. $imageFileType holds the file extension of the file (in lower case)
5. Next, check if the image file is an actual image or a fake image
[bookmark: _vkdfkgem38no]PHP Cookies
[bookmark: _g6ob81ihtra]PHP Create/Retrieve a Cookie
A cookie is created with the setcookie() function.
The following example creates a cookie named "user" with the value "John Doe". The cookie will expire after 30 days (86400 * 30). The "/" means that the cookie is available in entire website (otherwise, select the directory you prefer).
We then retrieve the value of the cookie "user" (using the global variable $_COOKIE). We also use the isset() function to find out if the cookie is set:
[image:]
Cookie named 'user' is not set! will be displayed on executing this code
[bookmark: _i04fgb8g9nvd]Modify a Cookie Value
To modify a cookie, just set (again) the cookie using the setcookie() function
[bookmark: _lhono5grhyhu]Delete a Cookie
To delete a cookie, use the setcookie() function with an expiration date in the past.
[bookmark: _ytlx42mpq2fr]PHP Sessions
When you work with an application, you open it, do some changes, and then you close it. This is much like a Session. The computer knows who you are. It knows when you start the application and when you end. But on the internet there is one problem: the web server does not know who you are or what you do, because the HTTP address doesn't maintain state.
Session variables solve this problem by storing user information to be used across multiple pages (e.g. username, favorite color, etc). By default, session variables last until the user closes the browser.
So; Session variables hold information about one single user, and are available to all pages in one application.
[bookmark: _kjvraab3twy4]Start a PHP Session
A session is started with the session_start() function.
Session variables are set with the PHP global variable: $_SESSION.
Now, let's create a new page called "demo_session1.php". In this page, we start a new PHP session and set some session variables:
[image:]
[bookmark: _oj00euqzwdl2]Get PHP Session Variable Values
Next, we create another page called "demo_session2.php". From this page, we will access the session information we set on the first page ("demo_session1.php").
Notice that session variables are not passed individually to each new page, instead they are retrieved from the session we open at the beginning of each page (session_start()).
Also notice that all session variable values are stored in the global $_SESSION variable.
[image:]
[bookmark: _nghlx2owqk6s]Destroy a PHP Session
To remove all global session variables and destroy the session, use session_unset() and session_destroy()
[bookmark: _ovmdhlhonvmm]PHP Filters
PHP filters are used to validate and sanitize external input.
The PHP filter extension has many of the functions needed for checking user input, and is designed to make data validation easier and quicker.
The filter_list() function can be used to list what the PHP filter extension offers.
Example:
[image:]
Why Use Filters?
Many web applications receive external input. External input/data can be:
1. User input from a form
2. Cookies
3. Web services data
4. Server variables
5. Database query results
[bookmark: _jsiozcjfij2x]PHP filter_var() Function
The filter_var() function both validate and sanitize data.
The filter_var() function filters a single variable with a specified filter. It takes two pieces of data:
1. The variable you want to check
2. The type of check to use
[bookmark: _ovv5v85fa0u5]Validate an Integer
The following example uses the filter_var() function to check if the variable $int is an integer. If $int is an integer, the output of the code below will be: "Integer is valid". If $int is not an integer, the output will be: "Integer is not valid":
[image:]
[bookmark: _4j24qn8cle7a]Validate an IP Address
The following example uses the filter_var() function to check if the variable $ip is a valid IP address:
[image:]
[bookmark: _afaxdy4ujev2]Sanitize and Validate an Email Address
The following example uses the filter_var() function to first remove all illegal characters from the $email variable, then check if it is a valid email address:
[image:]
[bookmark: _uddzng4nncvt]PHP Callback Functions
A callback function (often referred to as just "callback") is a function which is passed as an argument into another function.
Any existing function can be used as a callback function. To use a function as a callback function, pass a string containing the name of the function as the argument of another function.
Example:
[image:]
The output for the above code is as follows:
[image:]
Callbacks in User Defined Functions
User-defined functions and methods can also take callback functions as arguments. To use callback functions inside a user-defined function or method, call it by adding parentheses to the variable and pass arguments as with normal functions:
[image:]

[bookmark: _keozk7lfbmq]PHP and JSON
PHP has some built-in functions to handle JSON.
First, we will look at the following two functions:
1. json_encode()
2. json_decode()
[bookmark: _c0dwsel5s9qd]PHP - json_encode()
The json_encode() function is used to encode a value to JSON format.
Example:
[image:]
[bookmark: _odezmkd25xlz]PHP - json_decode()
The json_decode() function is used to decode a JSON object into a PHP object or an associative array.
Example:
[image:]
[bookmark: _2a63ymt005y]PHP Exceptions
[bookmark: _m2fc8nl1unhi]What is an Exception?
1. An exception is an object that describes an error or unexpected behaviour of a PHP script.
2. Exceptions are thrown by many PHP functions and classes.
3. User defined functions and classes can also throw exceptions.
4. Exceptions are a good way to stop a function when it comes across data that it cannot use.
[bookmark: _to8i00eodufr]Throwing an Exception
1. The throw statement allows a user defined function or method to throw an exception. When an exception is thrown, the code following it will not be executed.
2. If an exception is not caught, a fatal error will occur with an "Uncaught Exception" message.
[bookmark: _ywedve8qi1am]The try...catch Statement
We use the try...catch statement to catch exceptions and continue the process.
Example:
[image:]
[bookmark: _82nm6uw3z6r7]The try...catch...finally Statement
The try...catch...finally statement can be used to catch exceptions. Code in the finally block will always run regardless of whether an exception was caught. If finally is present, the catch block is optional.
Example:
[image:]

[bookmark: _29gb4x9dk9i9]The Exception Object
The Exception Object contains information about the error or unexpected behaviour that the function encountered.
The following is the list of parameter values with their corresponding descriptions:
[image:]
[bookmark: _a19pofe25k2n]Methods
When catching an exception, the following table shows some of the methods that can be used to get information about the exception:
[image:]

[bookmark: _xie5bfqolfgq]PHP - OOP
[bookmark: _7396yxyq9pe8]PHP What is OOP?
OOP stands for Object-Oriented Programming.
Procedural programming is about writing procedures or functions that perform operations on the data, while object-oriented programming is about creating objects that contain both data and functions.
Object-oriented programming has several advantages over procedural programming:
1. OOP is faster and easier to execute
2. OOP provides a clear structure for the programs
3. OOP helps to keep the PHP code DRY "Don't Repeat Yourself", and makes the code easier to maintain, modify and debug
4. OOP makes it possible to create full reusable applications with less code and shorter development time
[bookmark: _qqqv2dgmafm3]PHP - What are Classes and Objects?
Classes and objects are the two main aspects of object-oriented programming.
Look at the following illustration to see the difference between class and objects:
[image:]
So, a class is a template for objects, and an object is an instance of a class.
When the individual objects are created, they inherit all the properties and behaviors from the class, but each object will have different values for the properties.

[bookmark: _5dtzpzxyw6sx]PHP OOP - Classes and Objects
[bookmark: _wertcv26bo4t]Define a Class
A class is defined by using the class keyword, followed by the name of the class and a pair of curly braces ({}). All its properties and methods go inside the braces.
Example:
[image:]
[bookmark: _s9byqqa4nd6y]Define Objects
Classes are nothing without objects! We can create multiple objects from a class. Each object has all the properties and methods defined in the class, but they will have different property values.
Objects of a class is created using the new keyword.
In the example below, $apple and $banana are instances of the class Fruit:
[image:]
[bookmark: _45030877zi68]PHP - instanceof
You can use the instanceof keyword to check if an object belongs to a specific class
[bookmark: _wpj991wudmrm]PHP - The __construct Function
A constructor allows you to initialize an object's properties upon creation of the object.
If you create a __construct() function, PHP will automatically call this function when you create an object from a class.
Notice that the construct function starts with two underscores (__)!
We see in the example below, that using a constructor saves us from calling the set_name() method which reduces the amount of code:
[image:]
[bookmark: _100n5ukrtcwm]PHP - The __destruct Function
A destructor is called when the object is destructed or the script is stopped or exited.
If you create a __destruct() function, PHP will automatically call this function at the end of the script.
Notice that the destruct function starts with two underscores (__)!
The example below has a __construct() function that is automatically called when you create an object from a class, and a __destruct() function that is automatically called at the end of the script:
[image:]
[bookmark: _ixc9vsty2opo]PHP - Access Modifiers
Properties and methods can have access modifiers which control where they can be accessed.
There are three access modifiers:
· public - the property or method can be accessed from everywhere. This is default
· protected - the property or method can be accessed within the class and by classes derived from that class
· private - the property or method can ONLY be accessed within the class
In the following example we have added three different access modifiers to the three properties. Here, if you try to set the name property it will work fine (because the name property is public). However, if you try to set the color or weight property it will result in a fatal error (because the color and weight property are protected and private):
[image:]
[bookmark: _v2ztlqrd4xsi]PHP - What is Inheritance?
Inheritance in OOP = When a class derives from another class.
The child class will inherit all the public and protected properties and methods from the parent class. In addition, it can have its own properties and methods.
An inherited class is defined by using the extends keyword.
Let's look at an example:
[image:]

[bookmark: _4hujqtb864qi]Example Explained
The Strawberry class is inherited from the Fruit class.
This means that the Strawberry class can use the public $name and $color properties as well as the public __construct() and intro() methods from the Fruit class because of inheritance.
The Strawberry class also has its own method: message().
[bookmark: _4yt600tjxpk1]PHP - Overriding Inherited Methods
Inherited methods can be overridden by redefining the methods (use the same name) in the child class.
[bookmark: _6lv50yjo9exu]PHP - The final Keyword
The final keyword can be used to prevent class inheritance or to prevent method overriding.
[bookmark: _r7lueiz7pakb]PHP - Class Constants
Constants cannot be changed once it is declared.
Class constants can be useful if you need to define some constant data within a class.
A class constant is declared inside a class with the const keyword.
Class constants are case-sensitive. However, it is recommended to name the constants in all uppercase letters.
We can access a constant from outside the class by using the class name followed by the scope resolution operator (::) followed by the constant name, like here:
[image:]
[bookmark: _94dwkok6hq88]PHP - What are Abstract Classes and Methods?
Abstract classes and methods are when the parent class has a named method, but need its child class(es) to fill out the tasks.
An abstract class is a class that contains at least one abstract method. An abstract method is a method that is declared, but not implemented in the code.
An abstract class or method is defined with the abstract keyword.
When inheriting from an abstract class, the child class method must be defined with the same name, and the same or a less restricted access modifier. So, if the abstract method is defined as protected, the child class method must be defined as either protected or public, but not private. Also, the type and number of required arguments must be the same. However, the child classes may have optional arguments in addition.
So, when a child class is inherited from an abstract class, we have the following rules:
1. The child class method must be defined with the same name and it redeclares the parent abstract method
2. The child class method must be defined with the same or a less restricted access modifier
3. The number of required arguments must be the same. However, the child class may have optional arguments in addition
[bookmark: _3v7a3rpk5xb8]PHP - What are Interfaces?
Interfaces allow you to specify what methods a class should implement.
Interfaces make it easy to use a variety of different classes in the same way. When one or more classes use the same interface, it is referred to as "polymorphism".
Interfaces are declared with the interface keyword.
[bookmark: _36ix4wjdrs87]PHP - Interfaces vs. Abstract Classes
Interface are similar to abstract classes. The difference between interfaces and abstract classes are:
· Interfaces cannot have properties, while abstract classes can
· All interface methods must be public while abstract class methods may also be private or protected
· All methods in an interface are abstract, so they cannot be implemented in code and the abstract keyword is not necessary
· Classes can implement an interface while inheriting from another class at the same time
[bookmark: _blc08yv1r3s1]PHP - Using Interfaces
To implement an interface, a class must use the implements keyword.
A class that implements an interface must implement all of the interface's methods.
Example:
[image:]
[bookmark: _633gbazc6fr9]PHP - What are Traits?
PHP only supports single inheritance: a child class can inherit only from one single parent.
So, what if a class needs to inherit multiple behaviors? OOP traits solve this problem.
Traits are used to declare methods that can be used in multiple classes. Traits can have methods and abstract methods that can be used in multiple classes, and the methods can have any access modifier (public, private, or protected).
Traits are declared with the trait keyword
Example:
[image:]
[bookmark: _mh35hmgz1jul]Example Explained
Here, we declare one trait: message1. Then, we create a class: Welcome. The class uses the trait, and all the methods in the trait will be available in the class.
If other classes need to use the msg1() function, simply use the message1 trait in those classes. This reduces code duplication, because there is no need to redeclare the same method over and over again.
[bookmark: _lo5tvr4h8wjb]PHP - Static Methods
Static methods can be called directly - without creating an instance of a class.
Static methods are declared with the static keyword. To access a static method use the class name, double colon (::), and the method name
Example:
[image:]
[bookmark: _kbgnyts6py35]Example Explained
Here, we declare a static method: welcome(). Then, we call the static method by using the class name, double colon (::), and the method name (without creating a class first).
[bookmark: _f6c5onsn8d6l]PHP - Static Properties
Static properties can be called directly - without creating an instance of a class.
Static properties are declared with the static keyword. To access a static property use the class name, double colon (::), and the property name
Example:
[image:]
[bookmark: _2300t6sk8vc7]Example Explained
Here, we declare a static property: $value. Then, we echo the value of the static property by using the class name, double colon (::), and the property name (without creating a class first).
[bookmark: _aqcxlu4ljpba]PHP Namespaces
Namespaces are qualifiers that solve two different problems:
1. They allow for better organization by grouping classes that work together to perform a task
2. They allow the same name to be used for more than one class
For example, you may have a set of classes which describe an HTML table, such as Table, Row and Cell while also having another set of classes to describe furniture, such as Table, Chair and Bed. Namespaces can be used to organize the classes into two different groups while also preventing the two classes Table and Table from being mixed up.
[bookmark: _8am6gtvqu9sz]Declaring a Namespace
Namespaces are declared at the beginning of a file using the namespace keyword.
[bookmark: _z4kibevq1ks0]Using Namespaces
Any code that follows a namespace declaration is operating inside the namespace, so classes that belong to the namespace can be instantiated without any qualifiers. To access classes from outside a namespace, the class needs to have the namespace attached to it.

[bookmark: _p16jv93z2qej]Namespace Alias
It can be useful to give a namespace or class an alias to make it easier to write. This is done with the use keyword

[bookmark: _pvg8fvzy1h8]PHP - What is an Iterable?
An iterable is any value which can be looped through with a foreach() loop.
The iterable pseudo-type was introduced in PHP 7.1, and it can be used as a data type for function arguments and function return values.
[bookmark: _xnc3m932fkzi]PHP - Using Iterables
The iterable keyword can be used as a data type of a function argument or as the return type of a function.
Example:
[image:]
[bookmark: _j1sczrqp3twa]PHP - Creating Iterables
Arrays
All arrays are iterables, so any array can be used as an argument of a function that requires an iterable.
Iterators
Any object that implements the Iterator interface can be used as an argument of a function that requires an iterable.
An iterator contains a list of items and provides methods to loop through them. It keeps a pointer to one of the elements in the list. Each item in the list should have a key which can be used to find the item.
An iterator must have these methods:
· current() - Returns the element that the pointer is currently pointing to. It can be any data type
· key() Returns the key associated with the current element in the list. It can only be an integer, float, boolean or string
· next() Moves the pointer to the next element in the list
· rewind() Moves the pointer to the first element in the list
· valid() If the internal pointer is not pointing to any element (for example, if next() was called at the end of the list), this should return false. It returns true in any other case

-----------------------Reference credits: w3schools,Tutorispoint, https://github.com/hegdenaveen1/Become-A-Full-Stack-Web-Developer#start-here -------------------
image6.png
NGO U R WwN R

<?php
$cars = array("Volvo
var_dump($cars);
/*output will be array(3) { [@]=> string(5)
"Volvo" [1]=>
string(3) "BMW" [2]=> string(6) "Toyota" }*/
2>

" UBMK", "

Toyota");

image7.png
VWO NV A WN R

18
11

<?php
class Car {
function Car() {
$this->model = "VW
}

}

// create an object

$herbie = new Car();

// show object properties

echo $herbie->model; //Output will be VW
2

image8.png
[V PRI

<?php

$x = "Hello world!";

$x = null;

var_dump($x); //Output will be NULL
?>

image9.png
A w N R

<?php

define("GREETING", "Welcome to HackerEarth!");

echo GREETING; // Output will be Welcome to HackerEarth!
2>

image10.png
Operator

+

%

*x

Name
Addition
Subtraction
Multiplication
Division
Modulus

Exponentiation

Example
$x + 3y
$x- 3y
$x * $y
$x/ $y
$X % Sy

$x ** sy

Result

Sum of $x and $y

Difference of $x and $y
Product of $x and $y

Quotient of $x and $y
Remainder of $x divided by $y

Result of raising $x to the $y'th
power

image11.png
Assignment Same as... Description

x=y x=y The left operand gets set to the value of the expression on
the right

Addition
Subtraction
Multiplication

Division

Modulus

image12.png
Operator

<>

Name
Equal

Identical

Not equal
Not equal

Not identical

Greater than
Less than

Greater than or equal
to

Less than or equal to

Spaceship

Result
Returns true if $x is equal to $y

Returns true if $x is equal to $y, and
they are of the same type

Returns true if $x is not equal to $y
Returns true if $x is not equal to $y

Returns true if $x is not equal to $y, or
they are not of the same type

Returns true if $x is greater than $y
Returns true if $x is less than $y

Returns true if $x is greater than or
equal to $y.

Returns true if $x is less than or equal to

sy

Returns an integer less than, equal to, or
greater than zero, depending on if $x is
less than, equal to, or greater than $y.
Introduced in PHP 7.

image13.png
Operator
+5x
Sxtt
—x

$x--

Name
Pre-increment.
Post-increment
Pre-decrement

Post-decrement

Description

Increments $x by one, then returns $x
Returns $x, then increments $x by one
Decrements $x by one, then returns $x

Returns $x, then decrements $x by one

image14.png
Operator
and
or

xor

a8

Name

And

or

Xor

And

or

Not

Example
$x and $y
$xor $y

$x xor §y

Sx && Sy
$x || $y
15x

Result
True if both $x and $y are true
True if either $x or Sy is true

True if either $x or $y is true, but not
both

True if both $x and $y are true
True if either $x or $y is true

True if $x is not true

image15.png
Operator Name Example Result

Concatenation Stxtl . $txt2 Concatenation of $txt1
and $txt2

= Concatenation assignment ~ $txt1 .= $txt2 Appends $txt2 to $txt1

image16.png
Operator

+

Name
Union

Equality

Identity

Inequality

Inequality

Non-identity

Example

$x + 3y

$x == 3y

Result
Union of $x and $y

Returns true if $x and $y have the same
key/value pairs

Returns true if $x and $y have the same
key/value pairs in the same order and of
the same types

Returns true if $x is not equal to $y
Returns true if $x is not equal to $y

Returns true if $x is not identical to $y

image17.png
Operator

22

Name

Ternary

Null coalescing

Example

$x = expr1 ?
expr2 : expr3

$x = expr1 22
expr2

Result

Returns the value of $x.
The value of $x is expr2 if expr1 = TRUE.
The value of $x is expr3 if expr1 = FALSE

Returns the value of $x.
The value of $x is expr1 if expr1 exists,
and is not NULL.

If expr1 does not exist, or is NULL, the
value of $x is expr2.

Introduced in PHP 7

image18.png
VA WN R

<?php
$t = date("H");
if ($t < "20") {
echo "Have a good day!"; //Output will be Have a good day!
}

?>

image19.png
0NV A WN R

<?php
$t = date("H");
if ($t < "20") {
echo "Have a good day!™
} else {
echo "Have a good night

}

2>

B

3 //output will be Have a good day!

image20.png
WoWwNOU A WNR

-
®

<?php

$t = date("H");

if ($t < "10")
echo "Have a
} elseif ($t <
echo "Have a
} else {
echo "Have a

{

good morning!
20"y {

good day!";

good night!"; //output will be Have a good

day!

image21.png
LNV A WN R

10
11
12
EE]
14
15
16
17

<?)

$favcolor = "red";

php

switch ($favcolor) {

case "red":
echo "Your favorite color is red!";
break;

case "blue”:
echo "Your favorite color is blue!
break;

case "green":
echo "Your favorite color is green
break;

default:
echo "Your favorite color is neither red, blue, nor green
//0utput will be Your favorite color is red!

image22.png
NoOu A WN R

<2?php

$x = 1;

while($x <= 5) {
echo "The number is: $x
";
$x++;

¥

>

image23.png
‘The number is;
‘The number is;
‘The number is;
‘The number is;

‘The number is;

G bt e

image24.png
NoOu A WN R

<2?php

$x = 1;

do {
echo "The number is: $x
";
$x++;

} while ($x <= 5);

>

image25.png
VoA WwN R

<2php
For ($x = 0 $x <= 10; $x++) {
echo "The number is: $x
";

¥

>

image26.png
The number is:
The number is:
The number is:
The number is:
The number is:
The number is:
The number is:
The number is:
The number is:
The number is:

The number is:

L A I Y

image27.png
oV A wWwN e

<?php

$colors = array("red”, "green”,

foreach ($colors as $value) {
echo "$value
";

¥

>

"blue”, "yellow");

image28.png
red
green
blue

yellow

image29.png
NoOw A wWwN R

<2php
function writeMsg() {
echo "Hello world!";
b
writeMsg(); // call the function
//Output will be Hello world!
2>

image30.png
<2php
function familyName($fname) {
echo "$fname Refsnes.
";

CENOW A WN R

10

i3
FamilyName("Jani");
FamilyName("Hege");
FamilyName("Stale");
familyName("Kai Jim");
FamilyName("Borge");
2>

image31.png
Jani Refsnes.
Hege Refanes.
Stale Refanes
Kai Jim Refsnes.
Borge Refancs.

image32.png
LNV A WN R

<?php declare(strict_types=1); // strict requirement
function setHeight(int $minheight = 50) {
echo "The height is : $minheight <br

¥

setHeight (350) ;

setHeight(); // will use the default value of 50
setHeight (135);

setHeight (80) ;

>

image33.png
The height is
The height is
The height is
The height is

350
50
135
80

image34.png
LNV A WN R

<?php declare(strict_types=1); // strict requirement
function sum(int $x, int $y) {

$z = $x + $y;

return $z;

¥
echo "5 + 10 =

echo "7 + 13 =
echo "2 + 4
>

. sum(5, 10) . "
";
. sum(7, 13) . "
";
. sum(2, 4);

image35.png
5+10=15
7+13=20
2+4=6

image36.png
ENVIF WV

<?php declare(strict_types=1); // strict requirement

function addNumbers(float $a, float $b) : float {
return $a + $b;

¥

echo addNumbers(1.2, 5.2); //Output will be 6.4

2>

image37.png
0NV A WN

<?php

function add_five(&value) {
$value += 5;

¥

$num = 2;

add_five($num

echo $num; //Output will be 7

2>

image38.png
u s WwN R

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo "I like " . $cars[@] . ", " . $cars[1] . " and " . $cars[2] .
//output will be I like Volvo, BMW and Toyota

2>

B

image39.png
uih wN R

<?php

$age = array("Peter"=>"35", "Ben"=>"37", "Joe"=>"43");
echo "Peter is " . $age['Peter'] . " years old.";
//Output will be Peter is 35 years old.

>

image40.png
<?php
$cars = array (

array("Volvo",22,18),

array("BMW",15,13),

array("“saab",5,2),

array("Land Rover",17,15)
);
echo $cars[@][@].": In stock: ".$cars[@][1].", sold: ".$cars[@][2].".
";
echo $cars[1][@].": In stock $cars[1][1].", sold $cars[1][2].".
"
echo $cars[2][@].": In stock: ".$cars[2][1].", sold: ".$cars[2][2]."
echo $cars[3][@].": In stock: ".$cars[3][1].", sold: ".$cars[3][2].".
";
2

image41.png
Volvo: In stock: 22, sold: 18
BMW: In stock: 15, sold: 13.
Saab: In stock: 5, sold: 2.

Land Rover: In stock: 17, sold: 15,

image42.png
Function Description
preg_match() Returns 1 if the pattern was found in the string and 0 if not
preg_match_all() Returns the number of times the pattern was found in the string, which may also be 0

preg_replace() Returns a new string where matched patterns have been replaced with another string

image43.png
Modifier Description
i Performs a case-insensitive search

m Performs a multiline search (patterns that search for the beginning or end of a string
will match the beginning or end of each line)

u Enables correct matching of UTF-8 encoded patterns

image44.png
Expression Description
[abc] Find one character from the options between the brackets
[~abc] Find any character NOT between the brackets

[0-91 Find one character from the range 0 to 9

image45.png
Metacharacter Description
| Find a match for any one of the patterns separated by | as in: cat|dog|fish

Find just one instance of any character

e Finds a match as the beginning of a string as in: ~Hello

s Finds a match at the end of the string as in: World$

\d Find a digit

\s Find a whitespace character

\b Find a match at the beginning of a word like this: \bWORD, or at the end of a word like
this: WORD\b

oo Find the Unicode character specified by the hexadecimal number xxxx

image1.png
LNV A WN

<IDOCTYPE html>
<html>

<body>

<hi1>My first PHP page</hl>
<?php

echo "Hello World!
>

</body>

</html>

image46.png
Quantifier Description

n+ Matches any string that contains at least one n

n* Matches any string that contains zero or more occurrences of n
n? Matches any string that contains zero or one occurrences of n
n{x} Matches any string that contains a sequence of X n's

n{x,y} Matches any string that contains a sequence of X to Y n's

n{x} Matches any string that contains a sequence of at least X n's

image47.png
[C I SR NI

<?php

$str = "Apples and bananas
$pattern = "/ba(na){2}/i";
echo preg_match($pattern, $str); // Output will be 1
2

image48.png
VWO NV A WN R

10
kil
12

<1DOCTYPE HTML>

<html>
<body>
<form action="welcome.php" method="post">
Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="submit">
</form>
</body>

</html>

image49.png

image50.png
post” action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]);2>">

image51.png
post” action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]);2>">

image52.png
LNV A WN R

11
12
13
14
15
16
17

<fphp
// define variables and set to empty values

$name = $email = $gender = $comment = $website

if ($_SERVER["REQUEST_METHOD"] == "POST") {
$name = test_input($_POST["name"]);
$email = test_input($_POST["email”]);
$uebsite = test_input($_POST["website"]);
$comment = test_input($_POST["comment"]);
$gender = test_input($_POST["gender”]);
¥
function test_input($data) {
$data = trim($data);
$data = stripslashes($data);
$data = htmlspecialchars($data);
return $data;

¥

>

image53.png
WoWwNOU A WNR

o
®

<?php

echo "Today is " . date("Y/m/d") .
echo "Today is " . date("Y.m.d") .
echo "Today is " . date("Y-m-d") .
echo "Today is " . date("1");
/*output will beToday is 2020/09/10
Today is 2020.09.10

Today is 2020-09-10

Today is Thursday*/

2>

image54.png
A w N R

<?php

echo "The time is " . date("h:i:sa");
//0Output will be The time is ©6:36:07pm
>

image55.png
AJAX = Asynchronous JavaScript and XML
€SS = Cascading Style Sheets

HTHL = Hyper Text Markup Language

PHP

PHP Hypertext Preprocessor

SQL = Structured Query Language
SVG - Scalable Vector Graphics
XML = EXtensible Markup Language

image2.png
B wWN R

<?php

$txt = "HackerEarth";

echo "I love $txt!"; //Output will be I love HackerEarth
?>

image56.png
1
P

<?php
echo readfile("webdictionary.txt");
2>

image57.png
AJAX = Asynchronous JavaScript and XML CSS = Cascading Style Sheets HTML = Hyper Text
Markup Language PHP = PHP Hypertext Preprocessor SQL = Structured Query Language SVG =
Scalable Vector Graphics XML = EXtensible Markup Language236

image58.png
Modes

r+

wt

a+

X+

Description
Open a file for read only. File pointer starts at the beginning of the file

Open a file for write only. Erases the contents of the file or creates a new file if it doesn't exist.
File pointer starts at the beginning of the file

Open a file for write only. The existing data in file is preserved. File pointer starts at the end of
the file. Creates a new file if the file doesn't exist

Creates a new file for write only. Returns FALSE and an error if file already exists
Open a file for read/write. File pointer starts at the beginning of the file

Open a file for read/write. Erases the contents of the file or creates a new file if it doesn't exist.
File pointer starts at the beginning of the file

Open a file for read/write. The existing data in file is preserved. ile pointer starts at the end of
the file. Creates a new file if the file doesn't exist

Creates a new file for read/write. Returns FALSE and an error if file already exists

image59.png
0NV A WN R

<?php

$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");
$txt = "John Doe\n";

fwrite($myfile, $txt);

$txt = "Jane Doe\n";

fwrite($myfile, $txt);

fclose($myfile);

2>

image60.png
John Doe
Jane Doe

image61.png
<?php
$target_dir = "uploads/";
$target_file = $target_dir . basename($_FILES["fileToUpload”]["name"]);
$uploadok = 1;
$imageFileType = strtolower(pathinfo($target file,PATHINFO_EXTENSION));
// Check if image file is a actual image or fake image
if(isset($_POST["submit"])) {
$check = getimagesize($_FILES["fileToUpload"]["tmp_name"]);
if($check !== false) {
echo "File is an image - " . $check["mime"] . ".
$uploadok = 1;
} else {
echo "File is not an image.”;
$uploadOk = 0;
¥

image62.png
<?php

$cookie_name = "user”;

$cookie_value = "John Doe";

setcookie($cookie_name, $cookie value, time() + (86400 * 30),

>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name])) {
echo "Cookie named '" . $cookie_name .

} else {
echo "Cookie '" . $cookie_name . "' is setl
";
echo "Value is: " . $_COOKIE[$cookie_name];

¥

>

</body>

</html>

is not set!”;

5 // 86400 = 1 day

image63.png
CENOW A WN R

10
11
12
(E}
14
15

<?php

// start the session
session_start();

2

<IDOCTYPE html>

<html>

<body>

<2php

// Set session variables
$_SESSION["favcolor”] = "green”;
$_SESSION["favanimal”] = "cat";
echo "Session variables are set.”;
2

</body>

</html>

image64.png
<2php
session_start();

>

<IDOCTYPE html>

<html>

<body>

<?php

// Echo session variables that were set on previous page
echo "Favorite color is " . $ SESSION["favcolor”] . ".
";
echo "Favorite animal is " . $_SESSION["favanimal®] . "."
>

</body>

</html>

image65.png
el

CENOU A WN R

1

v <table>
<tr>
<td>Filter Name</td>
<td>Filter ID</td>
</tr>
<?php
foreach (filter_list() as $id —>$filter) {
echo '<troctd>’ . $filter . '</td><td>’ . filter_id($filter) .
3
>
</table>

“<ftd></tr>";

image3.png
B wWN R

<?php

$x = "Hello world!";

echo $x; //Output will be Hello world!
2>

image66.png
CENOW A WN R

<2?php
$int = 100;

if (Ifilter_var($int, FILTER_VALIDATE_INT)
echo("Integer is valid");
} else {
echo("Integer is not valid");
} //Output will be Interger is not valid
£

false)

image67.png
® NV A WN R

<?php
$ip = "127.0.0.1";
if (Ifilter_var($ip, FILTER VALIDATE_IP)
echo("$ip is a valid IP address");
} else {
echo("$ip is not a valid IP address");
} //Output will be 127.0.0.1 is a valid IP address
2

image68.png
<?php
$email = "john.doe@example.com";
// Remove all illegal characters from email
$email = filter_var($email, FILTER SANITIZE_EMAIL);
// Validate e-mail
if (Ifilter_var($email, FILTER_VALIDATE_EMAIL)
echo("$email is a valid email address”);
} else {
echo("$email is not a valid email address”);
} //0utput will be john.doe@example.com is a valid email address
>

false) {

image69.png
® NV A WN R

<?php
function
return
¥
$strings
$lengths

my_callback($item) {
strlen($item);

["apple”, "orange”, "banana”, "coconut"];
= array_map("my_callback”, $strings);

print_r($lengths);

>

image70.png
o1=>5
[1==6
R1=>6
B1==7

image71.png
<?php
function exclaim($str) {
return $str . "1 ";

¥

function ask($str) {
return $str . "2 "
¥
function printFormatted($str, $format) {
// Calling the $format callback function
echo $format($str);
¥
// Pass “exclaim” and "ask” as callback functions to printFormatted()
printFormatted("Hello world”, “exclaim”);
printFormatted("Hello world”, “ask");//Output will be Hello world! Hello world?
2

image72.png
A wN R

<?php

$age = array("Peter"=>35, "Ben"=>37, "Joe"=>43);

echo json_encode($age); //Output will be {"Peter":35,"Ben":37,"Joe":43}
2>

image73.png
o u A WwN R

<?php

$jsonobj = '{"Peter":35,"Ben":37,"Joe":43}";
var_dump(json_decode($jsonobj));

/*output will be object(stdClass)#1 (3)

{ ["Peter"]=> int(35) ["Ben"]=> int(37) ["Joe"]=> int(43) }*/
>

image74.png
<?php
function divide($dividend, $divisor) {
if($divisor == @) {
throw new Exception(“Division by zero");
1
return $dividend / $divisor;
}
try {
echo divide(5, @);
} catch(Exception $e) {
echo "Unable to divide.";
} //0utput will be Unable to divide.
?>

image75.png
<?php
function divide($dividend, $divisor) {
if($divisor o) {
throw new Exception(“Division by zero");

}

return $dividend / $divisor;

}
try {
echo divide(5, ©);
} catch(Exception $e) {
echo "Unable to divide.
} finally {
echo "Process complete.”;
} //0utput will be Unable to divide. Process
?>

complete.

image4.png
B wWN R

<?php

$x = 5985;

var_dump($x); //Output will be int(5985)
2>

image76.png
Parameter Description
message Optional. A string describing why the exception was thrown

code Optional. An integer that can be used used to easily distinguish this exception from others
of the same type

previous Optional. If this exception was thrown i a catch block of another exception, it is
recommended to pass that exception into this parameter

image77.png
Method
getMessage()

getPrevious()

getCode()
getFile()

getline()

Description
Returns a string describing why the exception was thrown

If this exception was triggered by another one, this method returns the previous
exception. If not, then it returns null

Returns the exception code
Returns the full path of the file in which the exception was thrown

Returns the line number of the line of code which threw the exception

image78.png
objects

Apple

Banana

Mango

image79.png
<?php
class Fruit {
// Properties
public $name;
public $color;
// Methods
function set_name($name) {
$this->name = $name;
}
function get_name() {
return $this->name;
}
+

2

image80.png
LNV A WN R

10
11
12
13
14
15
16
17
18
19
20
21

<2php
class Fruit {
// Properties
public $name;
public $color;
// Methods
function set_name($name) {
$this->name = $name;
b
function get_name() {
return $this->name;
b
$apple = new Fruit();
$banana = new Fruit();
$apple->set_name(Apple’);
$banana->set_name('Banana');
echo $apple->get_name();
echo "
";

echo $banana->get_name(); /*Output will be Apple

>

Banana*/

image81.png
i
2
]
4
5
6
7
8
9

10

<?php

class Fruit {
public $name;
public $color;

function _ construct($name) {
$this->name = $name;
}
function get_name() {
return $this->name;
}
}
$apple = new Fruit("Apple");
echo $apple->get_name(); //Output will be Apple
?>

image82.png
<?php

class Fruit {
public $name;
public $color;

function _ construct($name) {
$this->name = $name;
}
function __destruct() {
echo "The fruit is {$this->name}.";
}
}
$apple = new Fruit("Apple"); //Output will be The fruit is Apple.
2

image83.png
<?php

class Fruit {
public $name;
protected $color;
private $weight;

}
$mango = new Fruit();
$mango->name = 'Mango'; // OK

$mango->color = 'Yellow'; // ERROR
$mango->weight = '360'; // ERROR
?>

image84.png
VNN e WN R

10
11
12
13
14
15
16
17
18
19
20
21
2

<2php
v class Fruit {
public gname;
public $color;
public function _construct(name, $color) {
$this->name = $name;
$this->color = $color;
b

public function intro() {

echo "The fruit is {$this->name} and the color is {$this->color}.

b
¥
/1 Strauberry is inherited from Fruit
class Strauberry extends Fruit {

public function message() {

echo "Am I a fruit or a berry? ;

b
¥
$strauberry = neu Strauberry(“Strawberry”, "red");
$strauberry->message();

$strawberry->intro(); //Output will be Am I a fruit or a berry? The fruit is Strawberry and the color is red.

2

image85.png
NGO U A WN R

<?php
class Goodbye {
const LEAVING_MESSAGE = "Thank you for visiting HackerEarth!";
}
echo Goodbye: :LEAVING_MESSAGE;
//output will be Thank you for visiting HackerEarth!
2>

image5.png
A w N R

<?php

$x = 10.365;

var_dump($x); // Output will be float(10.365)
2>

image86.png
VWO NV A WN R

18
11
12

<?php
interface Animal {
public function makeSound();
}
class Cat implements Animal {
public function makeSound() {
echo "Meow";
1
}
$animal = new Cat();
$animal->makeSound(); //Output will be Meow
?>

image87.png
VWO NV A WN R

18
11
12

<?php
trait messagel {
public function msgl() {
echo "0OP is fun!

i

}

class Welcome {
use messagel;

}

$obj = new Welcome();

$obj->msgl(); //Output will be 0OP is fun!
>

image88.png
VWO NV A WN R

<?php
class greeting {

public static function welcome() {

echo "Hello World!";

}
¥
// call static method
greeting: :welcome(); //Output will be Hello World!
>

image89.png
NoOu A wN R

<?php

class pi {
public static $value = 3.14159;

}

// Get static property

echo pi
?>

$value; // Output will be 3.14159

image90.png
VWO NV A WN R

<?php
function printIterable(iterable $myIterable) {
foreach($myIterable as $item) {
echo $item;
}
}
$arr = ["a", i H
printIterable($arr); //Output will be abc
?>

