GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester -VI

Course Title: Introduction to NO SQL

(Course Code: 4360704)

Diploma Programme in which this course is offered	Semester in which offered	
Computer Science & Engineering	6 th semester	

1. RATIONALE

This course aims to introduce students to fundamental concepts and practical applications of various NoSQL databases, essential for modern data management within computer engineering.

2. COMPETENCY

Students will acquire foundational knowledge and practical skills in utilizing diverse NoSQL databases for managing and manipulating data in computer engineering contexts.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge, and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Analyze the impact of the CAP theorem on various NoSQL databases, highlighting the trade-offs between consistency, availability, and partition tolerance in database systems.
- b) Apply MongoDB's features and basic CRUD operations to design and manipulate data structures effectively, demonstrating proficiency in utilizing a document-oriented database.
- c) Demonstrate Cassandra's data model and query language (CQL), showcasing the ability to create and manage distributed data tables efficiently.
- d) Identify the significance of graph databases, illustrating their practical applications in solving complex relationship-oriented problems.
- e) Utilize Redis data structures and functionalities to implement efficient caching strategies, showcasing the role of Redis in enhancing data retrieval performance.

	Teaching To		Total	Examination Scheme										
	Scheme(In Hours)		Scheme(In		Credits (L+T/2+P/ 2)	Theory Marks		Theory Marks Pra		Credits Theory Marks Practi		Practic	al Marks	Total Marks
	L	Т	Р	С	C A	ES E	C A	ESE						
	0	0	4	2	0	0	25	25	50					

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA -Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs....... These PrOs need to be attained to achieve the COs.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Introduction and Types of NoSQL Databases	1	4
2	Introduction and Installation of MongoDB	2	4
3	Basic CRUD Operations with MongoDB	2	10
4	4 Introduction and Setup of Cassandra		4
5	5 Data Modeling and Simple Queries with Cassandra		10
6	Introduction to Neo4j Graph Databases	4	4
7	Basic Graph Queries and Implementations with Neo4j	4	10
8	Redis Basics: Introduction and Key-Value Operations		10
	Total		56

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency..*

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Analyze given problem and find possible solution methods	20
2	Select appropriate algorithm/method to solve the problem	20
3	Implement proper solution to solve the problem	40
4	Test the solutions by different inputs	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S.	Equipment Name with Broad	PrO.
No.	Specifications	No.
1	Computers with necessary software installations for each database system.	All

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Appreciation for Diverse Data Management Approaches
- b) Respect for Data Diversity
- c) Critical Thinking about Database Selection
- d) Ethical Considerations in Data Management

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher-level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher-level UOs could be included by the course teacher to focus on the attainment of COs and competency.

Unit	Unit Outcomes (UOs) (4 to 6 UOs at Application andabove level)	Topics and Sub-topics
Unit – I NoSQ L Fundamentals	 1a. Describe CAP Theorem for NoSQL 1b. Compare different types of NoSQL Databases 1c. Summarize the factors influencing database choice 	 1.1 Introduction to NoSQL databases 1.2 Types of NoSQL databases 1.3 CAP theorem 1.4 Consistency in NoSQL 1.5 Availability and Partition Tolerance 1.6 Comparisons between MongoDB, Cassandra, Neo4j and Redis 1.7 Use cases for different NoSQLdatabases 1.8 Factors influencing choice ofdatabase

Unit – II Introductio nto MongoDB	 2a. Install and connect to MongoDB successfully 2b. Perform basic CRUD operations & data modeling in MongoDB 2c. Implement Indexing, Query Optimization & Sharding in 	 2.1 Introducing MongoDB 2.2 MongoDB features and advantages 2.3 Installing MongoDB 2.4 Connecting to MongoDB 2.5 Basic CRUD operations 2.6 Data modeling in MongoDB
	MongoDB 2d. Describe Aggregation framework and Replica Sets	2.7 Indexing and Query Optimization2.8 Aggregation Framework2.9 Replica Sets2.10 Sharding in MongoDB
Unit– III Introductio nto Cassandra	 3a. Explore data model in Cassandra & CQL 3b. Install and configure Cassandra to perform basic operations 3c. Perform monitoring, troubleshooting, performance tuning and optimization 3d. Implement Compaction strategies 	 3.1 Overview of Cassandra 3.2 Data model in Cassandra 3.3 CQL (Cassandra Query Language) 3.4 Installing and configuringCassandra 3.5 Basic operations and maintenance 3.6 Monitoring and troubleshooting 3.7 Cassandra architecture 3.8 Performance tuning and optimization 3.9 Compaction strategies
Unit– IV Neo4j an dGraph Databases	 4a. Describe the basics of graph databases and graph theory 4b. Install Neo4j successfully to perform basic graphoperations 4c. Explore Cypher Query Language and Graph algorithms 4d. Describe Neo4j optimization techniques 	 4.1 Basics of graph databases 4.2 Graph theory fundamentals 4.3 Use cases for graph databases 4.4 Installing Neo4j 4.5 Cypher Query Language 4.6 Basic graph operations 4.7 Graph algorithms and their applications 4.8 Neo4j optimization techniques 4.9 Real-world graph database scenarios
Unit– V Redis Essential s	 5a. Describe Redis data structures 5b. Perform basic commands and operations in Redis 5c. Explore transactions in Redis and caching strategies 5d. Integrate Redis with other technologies 	 5.1 Overview of Redis 5.2 Redis data structures 5.3 Use cases for Redis 5.4 Basic commands and operations 5.5 Advanced features of Redis 5.6 Transactions in Redis 5.7 Using Redis in real- worldscenarios 5.8 Redis and caching strategies 5.9 Integrating Redis with other technologies

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN Not Applicable

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student- related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Hands-on practical sessions in a lab environment
- b) Database manipulation exercises
- c) Simple application development using NoSQL databases

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups haveto be formed for micro-projects, the number of students in the group should *not exceed three*. The

micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (*sixteen*) *student engagement hours* during the course. The student oughtto submit a micro-project by the end of the semester to develop the industry-oriented COs.

For Micro-Project, a 'Capstone Project' can be given, wherein student(s) need to submit the following:

- (a) Project Planning & Requirements
- (b) Implementation using MongoDB, Cassandra, Neo4j, and Redis
- (c) Project presentation and documentation

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication withplace, year and ISBN
1	MongoDB: The Definitive Guide	Kristina Chodorow and Shannon Bradshaw	O'Reilly, 2019
2	NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence	Pramod J. Sadalage and Martin Fowler	Pearson Education, 2013
3	Cassandra: The Definitive Guide	Jeff Carpenter and Eben Hewitt	O'Reilly, 2020
4	Graph Databases: New Opportunities forConnected Data	Ian Robinson, Jim Webber, and Emil Eifrem	O'Reilly, 2015
5	Redis in Action	Josiah L. Carlson	Manning Publications ,2013

14. SOFTWARE/LEARNING WEBSITES

- a. https://www.ibm.com/topics/nosql-databases
- b. https://www.coursera.org/lecture/nosql-databases/introduction-to-nosql-VdRNp
- c. https://www.geeksforgeeks.org/introduction-to-nosql/
- d. https://www.javatpoint.com/nosql-databases

15. PO-COMPETENCY-CO MAPPING

Semester VI	Introduction to NO SQL (Course Code: 4360704)						
	POs and PSOs						
Competency & Course	PO 1 Basic X Disciplin e specific knowled ge	PO 2 Proble m Analysi s	Design/ develop ment	PO 4 Engineeri ng Tools, Experime ntatio n &Testing	Engineer ing practices for	Projec t	long

Competency

Acquire foundational knowledge and practical skills in utilizing diverse NoSQL databases for managing and manipulating data in computer engineering contexts

<u>Course Outcomes</u> CO a) Analyze the impact of the CAP theorem on various NoSQL databases, highlighting the trade-offs between consistency, availability, and partition tolerance in database systems	3	3	2	2	2	2	3
CO b) Apply MongoDB's features and basic CRUD operations to design and manipulate data structures effectively, demonstrating proficiency in utilizing a document-oriented database.	3	3	3	2	2	2	3
CO c) Demonstrate Cassandra's data model and query language (CQL), showcasing the ability to create and manage distributed data tables efficiently.	3	3	3	2	2	2	3
CO d) Identify the significance of graph databases, illustrating their practical applications in solving complex relationship- oriented problems.	3	3	3	2	2	2	3
CO e) Utilize Redis data structures and functionalities to implement efficient caching strategies, showcasing the role of Redis in enhancing data retrieval performance.	3	3	2	2	2	2	3

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT

COMMITTEEGTU Resource Persons

Sr. No.	Name and Designation	Institute	Email	
1	Mrc Manisha D Mahta Haad	Government Polytechnic Himmatnagar	manishamehtain@gmail.com	
2	Mr Sachin D Shah Loot (Comp)	R. C. Technical Institute Ahmedabad	sachindshah@yahoo.com	
3	Mr. Conjour A. Vololri I act (Comm)	Government Polytechnic Himmatnagar	sanjay.valaki@gmail.com	
4	Mr. Hardik N. Talsania - Lect. (Comp)	R. C. Technical Institute Ahmedabad	hardik.n.talsania@gmail.com	