GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester –IV

Course Title: Automotive Mechanics

(Course Code: 4340202)

Diploma Programme in which this course is offered	Semester in which offered
Automobile Engineering	4 th Semester

1. RATIONALE

Mechanics is a branch of Physics, which incorporates science concerned with the motion of bodies under the action of forces, including the special case in which a body remains at rest. Study of automotive mechanics includes the underlying study of various forces, motion analysis of mechanisms, braking performance, engine performance, vibration analysis, direction control, etc. This course is mainly concerned with the movements of a vehicle on a road surface. The movements of interest are acceleration, braking, ride and turning. Course is designed to acquaint students with effects of various forces on the vehicle, sources of vibration and its isolation, steering geometry for true rolling and engine performance measurement. Calculation on wheel reaction, braking force impact, traction available at wheel, maximum possible acceleration for given situation, heat balance sheet etc. are also covered in the course with a view to develop problem solving capacity of student in the field of automotive mechanics.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop different types of skills leading to the achievement of the following competency.

• Use knowledge of automotive mechanics to improve vehicle performance.

3. COURSE OUTCOMES (COs)

The underpinning knowledge and the relevant skills associated with this competency are to be developed in the student to display the following COs:

- a) Interpret various terminologies used in Automotive Mechanics.
- b) Appreciate the importance of true rolling condition for steering to minimize side forces, vehicle vibrations and vibration isolation.
- c) Evaluate the vehicle performance based on given situation.
- d) Evaluate various parameters affecting Engine performance.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme	eaching Scheme Total Credits Examination Scheme		amination Scheme	
(In Hours)	(L+T+P/2)	Theory Marks	Practical Marks	

GTU - COGC-2021 Curriculum

L	Т	Р	С	СА	ESE	CA	ESE	Total Marks
2	2	0	4	30*	70	-	-	100

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA -Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED TUTORIAL EXERCISES

The following practical outcomes (PrOs) that are the sub-components of the COs. These PrOs need to be attained to achieve the COs.

Sr. No	Tutorials Outcomes	Unit	Approx.
		No.	Hrs.
			required
	a. Interpret and write various terminologies rela	ted to 1	4
	mechanics.		
	 Describe various mechanisms used in auton mechanics. 	notive	
1	 Explain important terms related to Auton mechanics 	notive	
	i) Aerodynamic forces ii) SAE Vehicle axis syst	em iii)	
	Rolling, Pitching and Yawing moments iv) SA	E Tire	
	axis system v) Side force		
	Steering System:	2	4
	a. Derive the equation for Ackerman st	eering	
	Mechanism.		
2	b. Derive the equation for the true rolling cond	ditions	
	(Minimum 2 examples)		
	c. Understand the equation of turning r	adius.	
	(Minimum 3 examples)		
	Vibration:	2	4
	a. Recall various terminologies related to Vibrati		
3	b. Prepare a list of sources of vibration in vehicle	2.	
	c. Describe various types of vibration.		
	d. Enlist various factors affecting vehicle vibratic	on and	
	human comfort.		
	Vehicle Performance:	3	4
4	a. Explain various resistances acting on a ve	ehicle.	
	(Along with 2 examples)		

	h	Illustrate the relation between the Engine speed and		
		vehicle speed. (Minimum 4 examples)		
	C	Draw the road performance curve (road speed vs		
	С.	power available at wheel & road speed vs tractive		
		effort) for,		
		Acceleration		
		Drawbar Pull		
		Gradability		
	Ь	Derive equations for weight distribution (along with		
	u.	2 examples) in		
		Three wheeled Vehicle		
		Four wheeled Vehicle		
	Vehicle	e Performance:	3	4
		Derive equations for the stability of a vehicle on	5	- r
	u.	slope. (Along with 2 examples)		
	b.	Calculation of maximum acceleration, maximum		
		tractive effort and relation for different drives		
5		(along with 3 examples)		
_	c.	Calculation of stopping distance. (When brakes are		
		applied to) (Minimum 3 examples)		
		Only front wheel,		
		Only rear wheels		
		All four wheels		
	Engine	Performance:	4	4
6	a.	Calculation related to basic terminology of engine.		
		(Minimum 4 examples)		
	Engine	Performance:	4	4
	a.	Describe Morse test along with its procedure.		
7	b.	Calculation of Power of multi cylinder along with		
'		example (Minimum 3 examples)		
	C.	Solve problems related to heat balance sheets		
		(along with 3 examples)		
		Total Hrs.		28

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. *The above table is only a suggestive list.*
- *ii.* Care must be taken in assigning and assessing study report as it is a study report. Study report, data collection and analysis report must be assigned in a group. Teacher has to discuss about type of data (which and why) before group start their market survey.

iii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Tutorial/Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the Tutorials	Weightage in %
1	Explain concept/properties/terminology	25
2	2 Draw appropriate figure/ correct calculation	
3	Timely submission	25
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

Sr.	Equipment Name with Broad Specifications					
No.						
1	Demonstration models of Four bar chain, Single and Double Slider Crank					
	Mechanisms and Cam and Follower Mechanism.					
2	Demonstration model of Steering linkages mechanism.					
3	Charts on various mechanisms and SAE Tire axis system.					

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs. More could be added to fulfil the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the field based exercises/project work. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics		
Unit	1.a Explain various terminologies	1.1 Introduction to Mechanics		
Introduction	of mechanics.	Mechanics		
to Automotive	1.b Differentiate various types of	Statics		
Mechanics	mechanism used in	 Dynamics 		
	Automobile system.	 Kinematics 		
	1.c Describe various forces and	Kinetics		
	moments acting on a vehicle.	1.2 Important terminology in Mechanics		
	1.d Explain SAE Tire axis system.	Kinematic Link		
		Kinematic Pair		
		Kinematic Chain		
		 Mechanisms 		
		• Structure		
		Machine		
		 Degree of freedom for planar 		
		mechanism.		
		1.3 Basic mechanisms used in		
		Automobile Systems		
		 Four bar chain Mechanism. 		
		 Single and Double Slider Crank Mechanisms. 		
		 Cam and Follower Mechanism 		
		(with their types)		
		1.4 Introduction to Automotive		
		Mechanics and related Important		
		terms		
		 Aerodynamic Forces (Drag & Lift) 		
		 Side force 		
		 SAE Vehicle Axis System 		
		 Rolling, Pitching & Yawing 		
		moments		
		1.5 SAE Tire axis system		

		· · · · · · · · · · · · · · · · · · ·
Unit II	2.a Explain Ackerman steering	2.1. Ackerman steering Mechanism
Vahiala	Mechanism.	2.2. Condition for true rolling
Vehicle Steering and	2.b Derive equation of true rolling	2.3. Turning circle radius (along with
Vibrations	condition for solving	calculations)
VIBIALIONS	numerical.	2.4. Definitions and Terminologies
	2.c Derive an equation for	related to Vibration
	Turning circle radius.	2.5. Types of Vibrations
	2.d Define various terminologies	2.6. Sources of vibrations in a vehicle.
	related to Vibrations.	2.7. Vibration isolation in a vehicle.
	2.e Classify different types of	
	vibration.	
	2.f Explain sources of vibration	
	and their isolation in vehicle	
	for human comfort.	
Unit III	3.a Explain various resistances	3.1. Power for propulsion
N/- - ¹ -1-	acting on moving vehicle and	 Various resistances to vehicle
Vehicle Performance	tractive effort available at	Traction and tractive effort
Performance	wheel.	3.2. Relation between engine speed
	3.b Derive equation of relation	and vehicle speed (along with
	between engine speed and	numerical)
	vehicle speed for solving	3.3. Road Performance Curves on the
	numerical.	basis of available power
	3.c Explain road performance on	Acceleration
	the basis of available power.	 Drawbar Pull
	3.d Derive formula for reactions	Gradeability
	at wheel on weight	3.4. Weight Distribution and reaction
	distribution in three and four	at wheel in
	wheeler.	• Three wheeled vehicles
	3.e Explain wheel reaction for	• Four wheeled vehicles
	stability of vehicle on slope.	3.5. Stability of a vehicle on slope
	3.f Determine various	3.6. Calculation of maximum
	performance parameters for	acceleration, maximum tractive
	given operating conditions	effort and relation for different
	and braking of vehicle.	drives
		3.7. Factors affecting braking
		efficiency
		3.8. Calculation of stopping distance.
		(When brakes are applied to)
		 Only front wheel,
		 Only rear wheels

		All four wheels
Unit IV Engine Performance	 4.a Describe various terminologies related to performance of engine. 4.b Describe working of common dynamometer used for measuring power. 4.c Analyze results of Morse test 4.d Prepare heat balance sheet from given data. 	 4.1. Performance Indicators of I.C engine Indicated power Brake power Friction power Indicated thermal efficiency Brake thermal efficiency Mechanical efficiency Volumetric efficiency Relative efficiencies 4.2. Dynamometers used for measuring power of engine Rope brake dynamometer Prony brake dynamometer Hydraulic dynamometer 4.3. Morse test – procedure – problems 4.4. Heat balance sheet - problems. 4.5. Variables affecting performance and methods to improve engine performance.

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Introduction to Automotive Mechanics	06	4	7	3	14
II	Vehicle Steering and Vibrations	06	3	7	4	14
	Vehicle Performance	10	4	14	10	28
IV	Engine Performance	06	4	4	6	14
	Total	28	15	32	23	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at

GTU - COGC-2021 Curriculum

different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of each activity. They should also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Charts can be prepared.
- b) Small report on any topic given by concern faculty.
- c) Small groups of students can be formed for assigned work. Assigned work should be such that it covers market survey, team work, presentation, time management, quality development.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably being *individually* undertaken to build up the skill and confidence in every student to become problem solver so that she/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more <u>COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to</u> GTU - COGC-2021 Curriculum maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should be about **14** - **16** (*fourteen to sixteen*) *student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

Prepare chart representing various kinematics links, pair and chain.

Prepare charts indicating various Aerodynamic Forces (Drag & Lift), Side force, SAE Vehicle Axis System, Rolling, Pitching & Yawing moments.

Prepare PPT or Poster presentation on different types of Vibrations with explanation.

Prepare booklet which covers all the formulae that requires to be recalled for calculation of vehicle and engine performance problems.

Make a model of basic mechanisms used in Automobile Systems using suitable material like thermocol /wood/plastic.

Prepare report on sources of vibrations and their isolation in a vehicle.

Draw on sheet various Road Performance Curves of Acceleration, Drawbar Pull, Gradeability

13. SUGGESTED LEARNING RESOURCES

S.	Title of Book	Author	Publication with place, year
No.			and ISBN
1	Fundamentals of	Thomas D. Gillespie	SAE International (2021)
	Vehicle Dynamics		ISBN: 978-1468601770
2	Automobile Mechanics	Dr. N K Giri	Khanna Publishers,
			Delhi (2008);
			ISBN: 9788174092168
3	Theory of Machines	R S Khurmi,	S. Chand & Co. Ltd,
		J K Gupta	New Delhi (2022);
			ISBN: 9789355010780
4	Theory of Machines	S S Rattan	McGraw Hill Education

GTU - COGC-2021 Curriculum

			India Pvt. Ltd., Noida (2017)
			ISBN:978-9351343479
5	Theory Of Machines	V. P. Singh	Dhanpat Rai & Co. (P) Limited
			New Delhi (2017)
			ISBN:978-8177000665
6	Vehicle Dynamics	Martin Meywerk	Wiley Publishing company,
			New York, United States. (2015)
			ISBN: 9781118971352
7	Vehicle Dynamics	Basilio Lenzo	Springer, Cham (Publisher)
			Denmark. (2022)
			ISBN: 0254-1971

14. SOFTWARE/LEARNING WEBSITES

- a) https://www.howacarworks.com
- b) <u>https://swayam.gov.in</u>
- c) <u>https://auto.howstuffworks.com</u>
- d) <u>https://nptel.ac.in/courses/112106270</u>
- e) <u>https://tinyurl.com/2ms7yzd4</u> for video link
- f) <u>https://tinyurl.com/3zrfjwn8</u> for web link

15. PO-COMPETENCY-CO MAPPING

Semester IV	Automotive Mechanics (4340202)						
	POs						
Competency	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
& Course Outcomes	Basic &	Problem	Design/	Engineerin	Engineerin	Project	Life-long
	Discipline	Analysis	developm	g Tools,	g practices	Managem	learning
	specific		ent of	Experimen	for	ent	
	knowledg		solutions	tation	society,		
	e			&Testing	sustainabil		
					ity &		
					environme		
					nt		

Use knowledge of automotive mechanics to improve vehicle performance.	3	2	1	2	2	2
Interpret various terminologies used in Automotive Mechanics.	3					1
Appreciatetheimportanceoftruerollingconditionforsteeringtominimizesideforces,vehiclevibrationsandvibration isolation.	3	2	1		2	2
Evaluate the vehicle performance based on given situation.	3	1	1	2		1
Evaluate various parameters affecting Engine performance	3	1	1	3	2	2

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No	Name and Designation	Institute	Contact No.	Email
1	Mr. D. A. Dave (Retd. HOD Automobile)	Sir B.P.T.I, Bhavnagar	9427182407	deven_a_dave@yahoo.co.in
2	Mrs. M. N. Vibhakar Lect. Automobile	C. U. Shah Polytechnic Surendranagar	9428868859	mpp3668@hotmail.com
3	Mr. H. L. Jadav Lect. Automobile	Sir B.P.T.I, Bhavnagar	9033040291	<u>hlj.auto@gmail.com</u>
4	Mr. A. D. Thakkar Lect. Automobile	Govt. Polytechnic, Ahmedabad	9033538553	<u>akshaythakkar.1993@gmail</u> .com
5	Mr. A. B. Changela Lect. Automobile	C. U. Shah Polytechnic Surendranagar	9879571407	arya.changela@gmail.com

GTU BOS and Branch Co-Ordinator Persons

Sr.	Name and	Institute	Contact	Email
No	Designation		No.	
	Mr. Shyam Varghese	Sir B.P.T.I, Bhavnagar		
1	HOD Automobile		9426396640	shyamvarghese@gmail.com
	Branch Co-ordinator			
2	Mr. A. K. Nanavati,	Govt. Polytechnic,	9426674409	aknanavati@gmail.com
	HOD Automobile	Ahmedabad	9426674409	