GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Course Code: 4330202

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester -III

Course Title: Automobile Transmission & Mechanism

(Course Code: 4330202)

Diploma programme in which this course is offered	Semester in which offered
Automobile Engineering	3rd

1. RATIONALE

The power developed by automobile engine is transmitted to the wheels through many parts & mechanisms such as clutch, gear Box, propeller shaft and differential. The entire system is called power transmission mechanism in automobile. It is therefore essential for automobile engineer to acquire knowledge of vehicle layout, transmission system, suspension systems and stability control systems of automobiles. This course is helpful for learner to understand basic fundamentals of transmission system, identifying and locating components of automotive transmission system. This course is pre-requisite for maintenance and service-II.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop different types of skills leading to the achievement of the following competency.

• Apply knowledge of construction and working of vehicle transmission and stability control system.

3. COURSE OUTCOMES (COs)

The underpinning knowledge and the relevant skills associated with this competency are to be developed in the student to display the following COs:

- a) Identify various layout of Chassis-Frame and related power train system
- b) Explain the construction and working of power train system.
- c) Describe need and working of driveline components and various axle assemblies.
- d) Explain the construction and operation of direction and stability control system.
- e) Explain construction and operation of comfort and stability systems.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Sc	heme	Total Credits	Examination Scheme				
(In	Hour	's)	(L+T+P/2)	Theory	y Marks	Practical	l Marks	Total
L	T	P	С	CA	ESE	CA	ESE	Marks
3	0	2	4	30*	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) that are the sub-components of the COs. *These PrOs need to be attained to achieve the COs*.

S.	Practical Outcomes (PrOs)	Unit		Approx.
No		No.		Hrs.
				required
1	Classify various types of chassis & frames and draw different	1		2
1	types of layouts for power flow form engine to wheels.		Any one	
2	Identify vehicle layout and chassis of given vehicle.	1		2
3	Identify various parts/ components of an automobile clutch	2		4
3	and illustrate its working mechanism for given cutch.			
4	Identify various parts/ components of an automobile gearbox	2		4
4	and illustrate its working mechanism for given gear box.		Any Two	
5	Draw power flow line diagram for forward and reverse gear	2		4
3	of 5+1 synchromesh gear box.			
6	Illustrate working of overdrive and differential.	2,3		4
7	Identify various parts / components of propeller shaft and	3		4
,	universal joints and illustrate its working mechanism.			
	Identify various parts/ components of axles and illustrate its	3	Any One	4
8	working mechanism for given axle. (live axle and Dead			
	axles).			
	Identify various parts/ components of steering system and	4		4
9	steering geometry and illustrate its working mechanism for			
	given steering system.			
10	Identify various parts/ components of hydraulic brake	4		4
10	system and illustrate its working mechanism.		Any one	
11	Identify various parts/ components of air/vacuum brake	4	7 my one	4
11	system and illustrate its working mechanism.			
	Identify various parts/ components of suspension system and	5		4
12	illustrate its working mechanism for given suspension			
	system.			
13	Identify various parts/ components of different type of	5		2
13	wheels & tyres and compare according to its uses.		Any one	
14	Understanding tyre specifications and tyre size and identify	5		2
	suitable specification on wheels and tyres of a given vehicle.			
	Total Hrs.			28

Note

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. Care must be taken in assigning and assessing study report as it is a first year study report. Study report, data collection and analysis report must be assigned in a group. Teacher has to discuss about type of data (which and why) before group start their market survey.
- iii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	S. No. Sample Performance Indicators for the PrOs		
	Identification of various parts/components. (Practical 1 to 4 &		
	7 to 13)		
1.	Name the part.	20	
2.	Explain its location.	40	
3.	Explain its main function.	40	
	Total		

S. No.	Sample Performance Indicators for the PrOs	Weightage in %	
	Draw power flow diagram of parts/components. (Practical 5)		
1.	Use of appropriate instruments, lines, dimensioning & annotations.	40	
2.	Accuracy of drawing	40	
3.	Neatness of drawing	20	
	Total		

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	Study working of parts/components. (Practical 6)	
1.	Coverage of points in study work.	50
2.	Presentation of study work	50
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S.	Equipment Name with Broad Specifications	PrO. No.
No.		
1	Cut section /Demonstration model of powertrain assembly with	1,2
	chassis and frame assembly.	

GTU - COGC-2021 Curriculum

2	The vehicle chassis should consist of a sectioned car. All the assemblies like Engine, Transmission line While running at lower speed by using an electric motor, the students can visualize the operation of important vehicle systems like an engine, gearbox, differential, power transfer to wheels Cut section /Demonstration model of different types of clutch assembly This model is made out of original car clutch parts such as Flywheel, Pressure Plate, Clutch plates, etc. to demonstrate the working of clutch assembly. By operating the pedal provided the model can be demonstrated. The entire model is mounted on a	3
3	sturdy iron frame. Cut section /Demonstration model of different types of gear box units (sliding mesh, constant mesh, synchromesh gearboxes) This is made out of original car gearbox, suitably sectioned to show the details of gear mechanism of forward and reverse speeds. A crank lever is provided to demonstrate the mechanism. Complete unit is mounted on a sturdy iron frame.	4,5
4	Cut section /Demonstration model of overdrive and differential assembly. This should be made out of original differential unit assembly and it should demonstrate crown gear, pinion, and sun and star gears. A handle provided to observe slow action. The whole unit mounted on a strong steel stand.	6
5	Cut section /Demonstration Model of Propeller shaft and different universal joints. This should be made out of original propeller shaft and universal joint assembly to dismantle and assembly and the whole unit mounted on a strong steel stand.	7
6	Cut section /Demonstration model of front and rear axle assembly. This should be made out of original front axle assembly and it should demonstrate front and rear axle (live and Dead axle) and the axle unit mounted on a strong steel stand.	8
7	Cut section /Demonstration model of Steering linkages mechanism (Power steering) The cut section model should be carefully sectioned to show internal parts, The cut section steering gearbox used a genuine component from OEM.	9
8	Cut section /Demonstration Model of different types of Brake (Drum, Disc, hydraulics and Air brake) A Hydraulic Brake working model unit consisting of master cylinder with brake oil reservoir bottle can be operate by a pedal	10,11

	for demonstration.	
	Air brake working model unit consisting of Compressor with Air	
	brake reservoir/Tank can be operate by a pedal for demonstration.	
9	Cut section /Demonstration Model of Suspension system (shocks	12
	absorber, coil spring, leaf spring, etc.)	
	This should be made out of original Coil spring, Leaf spring,	
	Rubber below and the cut section model should be carefully	
	sectioned to show internal parts of Telescopic shock absorber	
	assembly.	
10	Cut section /Demonstration Model of different types of wheel and	13,14
	tyre assembly.	
	Cut section model designed to enable students to study different	
	types of tyres with different treads and the cutaway model should	
	be carefully sectioned to show internal layer for training purposes,	
	professionally painted with different colors to differentiate layer in	
	a better way.	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs. More could be added to fulfil the development of this course competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the field-based exercises/project work. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit I	1.a.Explain about power	1.1 Necessity of power transmission
Introduction	transmission system with its	system of automobile vehicle.
to Automobile	different layout.	1.2 Classification of power
Transmission	1.b.Explain about chassis and	transmission layout based on:
System	frame with its classifications.	(a) Engine location.
	1.c.Differentiate between chassis	(b) Power output of axle.
	and frame.	1.3 Advantages and disadvantages of
	1.d.Describe chassis lubrication	various power transmission
	process.	system.
		1.4 Introduction of Chassis.
		(a) Classification of chassis.
		(b) Bus/Truck chassis.
		(c) Ladder chassis
		(d) Frame less chassis.
		1.5 Introduction of Frame.
		(a) Classification of Frame.
		-Conventional, semi integral
		and integral type, sub frame.
		(b) Various types of cross section
		used in frame channel, box
		and tubular section.
		(c) Load acting on frame.
		(d) Material for frame.
		1.6 Differentiate chassis and frame.
Unit II	2.a.Describe requirement of clutch	2.1.Necessity and requirement of
Power	and gearbox.	clutch and gearbox.
transmission	2.b.Explain construction and	2.2.Construction and functions of
system	functional details of various	different types of clutches.
(Clutch and	types of clutches and gear	- Single plate clutch, multiplate
Gearbox)	boxes.	clutch and centrifugal clutch.
	2.c.Explain various clutch	2.3. Construction detail of clutch plate
	actuating mechanisms.	and clutch lining materials.
	2.d.Describe various gear shifting	2.4. Working of clutch actuating
	mechanisms.	mechanism.

	2.e.Explain construction and	 Mechanical, vacuum and
	working of torque converter,	hydraulic.
	overdrive and transfer case.	2.5.Principal, construction and
	2.f. Describe lubrication in gear	working of fluid coupling.
	box.	2.6.Construction and functions of
	5 3 3 3	sliding mesh, constant mesh,
		synchromesh gearbox.
		2.7. Working of gear shifting
		mechanism.
		2.8.Torque converter and overdrive-
		construction & working.
		2.9.Construction and working of
		transfer case.
		2.10. List the various types and
		grade, rating of lubricating oil
		used for gear box.
Unit III	3.a. Explain construction and	3.1.Propeller shaft necessity
Driveline and	function of propeller shaft and	(requirements), construction,
axles	its different types.	function and its types.
(Front and	3.b.Explain construction, function	3.2.Universal Joint necessity,
Rear axles)	of universal joint and its	construction, function and its
	different types.	types.
	3.c.Explain construction, function	3.3.Final drive necessity,
	of final drive and its different	construction, function and its
	types.	types.
	3.d.Explain construction, function	3.4.Differential necessity,
	of differential gear box.	construction and working.
	3.e.Describe different types of	3.5. Types of front axle.
	front & rear axle and its	3.6.Rear axle function and its types.
	mounting methods.	3.7.Different types of axles
		mounting.
Unit IV	4.a.Describe steering geometry	4.1.Necessity of steering geometry.
Direction and	and terminology.	4.2.Describe Steering terminology:
stability	4.b.Explain various types of	kingpin inclination, camber,
control	steering linkages and steering	caster, toe-in and toe-out.
systems of	gears.	4.3. Types of steering linkages and
vehicles	4.c.Explain construction and	steering gears.
(Steering and	working of different types of	4.4.Effect of under & over steering,
Braking	power steering systems.	steering lock and turning circle
systems)	4.d.Describe requirement of	radius.
	braking system and its working	4.5.Construction and working of
	principal.	power steering systems.
		- Hydraulic, electrical &
		electronics controlled.

	4 5 1	[A C ST
	4.e.Explain construction and working of different types of brakes and its mechanism.	4.6.Necessity and working principle of braking system.4.7.Types of brakes- its Construction
	4.f. Explain characteristics of friction materials and discuss brake fluid properties.	and working, Braking Mechanism, 4.8.Friction material and its characteristic 4.9.Properties of brake fluid.
Unit V Comfort and stability systems of vehicles (Suspension system, Wheel and Tyres)	 5.a Explain different types of springs used in suspension. 5.b Explain construction and working of various types of suspension systems and shock absorber. 5.c Describe various types and construction of wheel rims. 5.d Explain construction and specification details of tyres. 5.e Describe tyre rotation process and its need. 	 5.1 Necessity of suspension system in vehicle. 5.2 Types of springs use in suspension system. 5.3 Construction and functions of various types of suspension system. 5.4 Construction and functions of shock absorber. 5.5 Various types of wheel rims and its features. 5.6 Concept of tyre aspect ratio 5.7 Construction and application of wired spoke, disc and alloy wheels 5.8 Constructional details of tube and tubeless tyres. 5.9 Tyre rating and specification. 5.10 Types of tyre tread pattern. 5.11 Tyre rotation procedure. 5.12 Tyre recycling, benefits and ways to dispose.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
No.		Hours	R	U	A	Total
			Level	Level	Level	Marks
I	Introduction to Automobile Transmission System	8	6	6	2	14
II	Power Transmission- (Clutch and Gearbox)	10	6	6	2	14
III	Driveline and Axles (Front and Rear Axles)	8	6	6	2	14
IV	Direction and stability control systems of vehicles (Steering and Braking systems)	8	6	6	2	14
V	Comfort and stability systems of vehicles (Suspension system, Wheel and Tyres)	8	6	6	2	14
	Total	42	30	30	10	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of each activity. They should also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Charts can be prepared.
- b) Small report on any topic given by concern faculty.
- c) Small groups of students can be formed for assigned work. Assigned work should be such that it covers market survey, team work, presentation, time management, quality development.

11. UGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably being individually undertaken to build up the skill and confidence in every student to become problem solver so that she/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should be about 14 - 16 (fourteen to sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

Prepare charts on different automobile transmission system with construction and working.

Comparative study on Rim and tyres (Ply rating) used in vehicle. (Parameter–specification, price, etc. of 2-Wheeler, 3-Wheeler, LMV and HMV.)

Prepare Layout/Chart on construction details of different types of tyres.

Comparative study on Clutch and clutch mechanism used in vehicle. (Parameter–specification, price, etc.)

GTU - COGC-2021 Curriculum

Comparative study on Gearbox and gear shifting mechanism used in vehicle. (Parameter–specification, price, etc.)

Draw various teeth patterns used in gear box and calculate the gear ratio of gear box.

Comparative study on Suspension system in different type's vehicle (Parameter-specification of Car, Truck, Bus etc.)

Comparative study on Hydraulic and electrical assisted Power steering (Parameter–specification and its components.

Prepare Layout/Model of Hydraulics brake or Power assisted Brake(any one)

13. SUGGESTED LEARNING RESOURCES

S.	Title of Book	Author	Publication with place, year
No.			and ISBN
1	Automobile Mechanics	William Crouse	Tata Mc-Graw Hill Publication
			ISBN-13:978-0-07-063435-0
2	Automotive Technology	James D Halderman	Pearson Education
			ISBN-10: 0-13-254261-7
			ISBN-13: 978-0-13-254261-6
3	Automobile engineering	R B Gupta	Satya Prakashan, New Delhi
			ASIN: B077PT44VV
			ISBN: 9788176848589,
			8176848581
4	Automobile engineering	K. M. Gupta	Umesh Publication
			ISBN: 818811422005
5	Automobile Engineering:	Dr. Kirpal Singh	Standard Publishers
	Volume 1		ISBN-13: 978-8180141966
6	Automobile Engineering	Jain K K	McGraw Hill Education, New
		Asthana	Delhi
			ISBN: 978-0-07-044529-1

14. SOFTWARE/LEARNING WEBSITES

- a) https://www.howacarworks.com
- b) https://swayam.gov.in
- c) https://auto.howstuffworks.com
- d) https://nptel.ac.in
- e) https://tinyurl.com/mr29c4x8 for video link
- f) https://tinyurl.com/4azv8h47 for web link

15. PO-COMPETENCY-CO MAPPING

Semester III	Automobile Transmission & Mechanism(4330202)						
	POs						
Competency & Course Outcomes	PO 1 Basic & Disciplin e specific knowled ge	Proble m Analysi	develop	Tools, Experiment	Engineering	Project Manage ment	PO 7 Life-long learning
Competency ● Apply knowledge of construction and working of vehicle transmission and stability control system.	3	-	1	1	2	1	2
a) Identify various layout of Chassis-Frame and related power train system.	3	-	-	1	-	1	2
b) Explain the construction and working of power train system.	3	-	1	1	-	1	2
c) Describe need and working of driveline components and various axle assemblies.	3	-	-	1	-	1	2
d) Explain the construction and operation of direction and stability control system.	3	-	1	1	2	1	2
e) Explain construction and operation of Comfort and stability systems.	3	-	-	1	2	1	2

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S.	Name and Designation	Institute	Contact No.	Email
No				
1	Mr. D. A. Dave (Retd.	Sir BPTI	9427182407	deven_a_dave@yahoo.co.in
	HOD Automobile)	Bhavnagar	942/10240/	
2	Mr. D. J. Gohel Lect. Automobile	C. U. Shah		
		Polytechnic	9879428562	djgohel80@gmail.com
	Lect. Automobile	Surendranagar		
3	Mr. J. K. Rachhadiya	Sir BPTI	9067579850	jasminrachhadiya@gmail.com
	Lect. Automobile	Bhavnagar	7007377030	jasiiiiii aciiiiadiya@giiiaii.coii
4	Mr. B. B. Chauhan	Sir BPTI	9427233866	bbcautodept@gmail.com
	Lect. Automobile	Bhavnagar	<i>9</i> 427233600	

GTU BOS and Branch Co-ordinator Persons

S.	Name and	Institute	Contact	Email
No	Designation		No.	
	Mr. Shyam Varghese	Govt.		
1	HOD Automobile	Polytechnic,	94263 96640	shyamvarghese@gmail.com
	Branch Co-ordinator	Ahmedabad		
	Mr. A. K. Nanavati,	C. U. Shah	9426674409	aknanavati@gmail.com
2	HOD Automobile	Polytechnic		
		Surendranagar		