

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code:3730007 Semester III Operation Research

Type of Course: Open Elective

Prerequisite:Nil

Rationale: Operation research techniques are useful for solving real life Industrial problem, Problems can be of Manufacturing, Service and supply related. Different techniques help for optimization of linear as well as non - linear type problem.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks			Total	
L	Т	Р	С	Theory Marks		Practical	Marks	Marks
				ESE	PA	ESE	PA	
				(E)	(M)	Viva (V)	(I)	
3	0	0	3	70	30	0	0	100

Sr. No.	Topics	Teaching Hours
1	Linear Programming Problems:	12
	Formulation of a LPP, - graphical solution, simplex method, duality in LPP,	
	sensitivity analysis, Integer linear programming, revised simplex method,	
	parametric linear programming, Dynamic programming under certainty, Dynamic	
	programming approach for solving LPP.	
2	Project Management, Inventory Control and Decision Making:	10
	CPM, PERT, Project time cost trade off, Resource allocation, Deterministic	
	inventory control models, Probabilistic inventory control models, Decision making	
	process, Decision making under uncertainty, Decision making under risk, Decision	
	tree analysis, Theory of games, Pure strategies, Mix strategies, Solutions method	
2	games without saddle points.	07
3	Classical Optimization Methods:	06
	Single variable optimization, Constrained and unconstrained multi-variable	
	Tucker conditions	
1	Non linear Programming:	10
4	Constrained Ontimization Techniques	10
	Unimodal function Unrestricted search Exhaustive search Dichotomous search	
	Interval halving method, Fibonacci method, Golden section method	
	Unconstrained Optimization Techniques	
	Direct Search Methods: Random search methods, Grid search method, Univariate	
	method,	
	Constrained Optimization Techniques	
	Direct Methods: Random search method, Sequential linear programming.	
5	Evolutionary Algorithms	04
-	An overview of evolutionary algorithms, Simulated annealing algorithm, Genetic	
	algorithm, Particle swarm optimization	

Distribution of marks weightage for cognitive level

Bloom's Taxonomy for Cognitive Domain	Marks
	% weightage

GUJARAT TECHNOLOGICAL UNIVERSITY

Master of Engineering Subject Code: 3730007

Subject Code. 5750007		
Recall	10	
Comprehension	10	
Application	25	
Analysis	25	
Evaluate	20	
Create	10	

References:

- 1. J. K. Sharma, Operation Research, Theory and Application, Macmillan Publishers India Ltd, 2013
- 2. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 3. S.S.Rao, Engineering Optimization Theory and Practice, New Age International (P) Ltd, Publishers.
- 4. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010
- 6. Harvey M Wagner, Principles of Operations Research: Prentice Hall of India 2010

Course Outcomes:

After learning the course:

Sr.	CO statement	Marks % weightage
No.		
CO-1	Students should able to apply the Liner programming techniques to	30
	solve problems of real life applications and carry out post	
	optimality analysis.	
CO-2	Students should able to apply the concepts of non-linear	30
	programming and apply them for real life problems.	
CO-3	Students should able to obtain quantitative solutions in business	20
	decision making under conditions of certainty, risk and uncertainty.	
CO-4	Students should able to implement various scientific tools and	20
	models that are available in the subject to take decisions in a	
	complex environment.	