

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171310 Semester – VII

Subject Name: Advance Water Treatment Technologies

Type of course: Professional Elective Course

Prerequisite: Knowledge of subjects Physico-chemical treatments of water

Rationale: Satisfying the standards for drinking water requires advance treatment. Hence this subject aims to give knowledge to the students regarding advanced water treatment technologies.

Teaching and Examination Scheme:

Tea	ching Sch	neme	Credits	Examination Marks				Total
L	T	P	C	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total	
		Hrs	
1	Introduction:		
	 Health and Environment Concern 		
	 Constituents of emerging concern 		
	 Evolution of water treatment technologies 		
	Selection water treatment plant		
	Water quality standards and regulations		
2	Removal of Selected Constituents:	04	
	Arsenic removal		
	 Iron and Manganese Removal 		
	 Softening 		
	 Nitrate removal 		
	 Radionuclides 		
3	Membrane filtration:	06	
	 Classification of Membrane Processes 		
	 Application of Membrane filtration in water Treatment 		
	 Membrane Module Configuration 		
	 Properties of Membrane Materials 		
	 Particle Capture in Membrane Filtration 		
	Membrane Fouling		
4	Reverse Osmosis:	05	
	 Classification of Membrane Processes 		
	 Applications for Reverse Osmosis 		
	 Reverse Osmosis Process Description 		
	Reverse Osmosis Fundamentals		

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171310

	Fouling and Scaling			
	Touring and souring			
5	Disinfection:	04		
	Disinfection Kinetics			
	Disinfection with Ozone			
	Disinfection with Ultraviolet Light			
6				
	 Introduction to Use of Oxidation Processes in Water Treatment 			
	Fundamentals of Chemical Oxidation and Reduction			
	Conventional Chemical Oxidants			
	• Photolysis			
7	Advanced Oxidation Processes:	06		
	 Introduction to Advanced Oxidation 			
	Ozonation as an Advanced Oxidation Process			
	Hydrogen Peroxide/Ozone Process for Potable Water			
	Hydrogen Peroxide/UV Light Process			
	• Sonolysis			
8	Air Stripping and aeration:	05		
	• Introduction			
	Gas Liquid Equilibrium: Henry's Law			
	Classification of Air Stripping and Aeration system			
	Packed tower Air stripping			
	 Spray aerators, Spray towers, diffused aeration and mechanical aeration 			
9	Ion Exchange:	05		
	 Evolution of Ion Exchange Technology 			
	Synthetic Ion Exchange Media			
	Properties of Ion Exchange Media			
	Ion Exchange Equilibrium			
	Ion Exchange Kinetics			
	Ion Exchange Process Configurations			

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
20	30	30	10	10	00

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171310

Reference Books:

- 1. Water Treatment Principles and Design by R. Rhodes Trussell Ph.D., P.E., BCEE, NAE, John C. Crittenden Ph.D., P.E., BCEE, NAE, David W. Hand Ph.D., BCEEM, Kerry J. Howe Ph.D., P.E., BCEE
- 2. Fundamentals of Water Treatment Unit Processes by David Hendricks.
- **3.** Principles of Water Treatmentby Kerry J. Howe, Ph.D., P.E., BCEE David W. Hand, Ph.D., BCEEM, John C. Crittenden, Ph.D., P.E., BCEE, NAE, R. Rhodes Trussell, Ph.D., P.E., BCEE, NAE, George Tchobanoglous, Ph.D., P.E., NAE

Course Outcomes:

Sr. No.	CO statement	Marks % weightage	
CO-1	Understand fundamentals of advance treatment processes and removal mechanism of specific constituents.	15	
CO-2	Implement new technologies for water treatment, including membrane technologies and disinfection.	35	
CO-3	Evaluate oxidation-reduction and advanced oxidation processes for water treatment.	25	
CO-4	-4 Explain principles and applications of air stripping, ion exchange processes for water treatment.		

List of Experiments:

- 1. Performance evaluation of RO Unit.
- 2. Nitrate removal using Ion-Exchange.
- 3. Arsenic removal using Adsorption process.
- 4. Fluoride removal using Adsorption Process.
- 5. Fluoride removal using Electro coagulation
- 6. Nitrate removal using Electro coagulation.
- 7. Desalination using electro dialysis.