

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3161610 DATAWAREHOUSING AND DATA MINING B.E. 6th SEMESTER

Type of course: Under graduate (Elective)

Prerequisite: NA

Rationale: NA

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	T	P	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr.	Content	Total	%
No.		Hrs.	Weightage
1	Data Warehousing:	5	10
	OLAP & OLTP, Data warehouse & Data mart, OLAM architecture,		
	Extraction, Transform & Loading (ETL) concept for generic, two-tier, three -		
	tier architecture, Data warehousing schema - Star, Snowflake, Fact		
	Constellation (Galaxy) - Data Cube, Operations on Data cube (slicing, roll		
	up, roll down, drill up etc)		
1	Introduction to data mining (DM):	3	10
	Motivation for Data Mining - Data Mining-Definition and Functionalities -		
	Classification of DM Systems - DM task primitives - Integration of a Data		
	Mining system with a Database or a Data Warehouse - Issues in DM – KDD		
	Process		
2	Data Pre-processing:	4	15
	Data summarization, data cleaning, data integration and transformation, data		
	reduction, data discretization and concept hierarchy generation, feature		
	extraction, feature transformation, feature selection, introduction to		
- 2	Dimensionality Reduction, CUR decomposition	-	20
3	Mining Frequent Patterns, Associations and Correlations:	7	20
	Efficient and scalable frequent item-set mining methods, mining various kind of association rules, from association mining to correlation analysis,		
	Advanced Association Rule Techniques, Measuring the Quality of Rules.		
4	Classification and Prediction:	10	20
4	Classification vs. prediction, Issues regarding classification and prediction,	10	20
	Statistical-Based Algorithms, Distance-Based Algorithms, Decision Tree-		
	Based Algorithms, Neural Network-Based Algorithms, Rule-Based		
	Algorithms, Combining Techniques, accuracy and error measures, evaluation		
	of the accuracy of a classifier or predictor. Neural Network Prediction		
	methods: Linear and nonlinear regression, Logistic Regression Introduction of		
	tools such as DB Miner / WEKA / DTREG DM Tools		
5	Cluster Analysis:	10	20

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3161610

	Clustering: Problem Definition, Clustering Overview, Evaluation of Clustering Algorithms, Partitioning Clustering -K-Means Algorithm, K-Means Additional issues, PAM Algorithm; Hierarchical Clustering - Agglomerative Methods and divisive methods, Basic Agglomerative		
	Hierarchical Clustering, Strengths and Weakness; Outlier Detection, Clustering high dimensional data, clustering Graph and Network data.		
8	Advance topics:	3	10
	Introduction to Web Mining, Spatial Data Mining, Temporal Mining, Text		
	Mining and Multimedia Mining.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	20	15	15	5	5		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. J. Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- 2. M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley &Sons Inc.
- 3. Paulraj Ponnian, "Data Warehousing Fundamentals", John Willey.
- 4. M. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education.
- 5. Ning Tan, Vipin Kumar, Michael Steinbanch Pang, "Introduction to Data Mining", Pearson Education

Course Outcome: After learning the course the students will be able

- 1. Understand why the data warehousing is important in addition to database systems.
- 2. Perform the preprocessing of data and apply mining techniques on it.
- 3. Identify the association rules, classification and clusters in large data sets.
- 4. Solve real world problems in business and scientific information using data mining.
- 5. Use data analysis tools for scientific applications.
- 6. Implement various supervised machine learning algorithms.

List of Experiments:

Laboratory work will be based on the above syllabus with minimum 10 experiments to be incorporated.