

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering
Subject Code: 3160317
Semester – VI
Introduction to Robotics

Type of course: Open Elective - II

Prerequisite: Fundamentals of Basic Physics, Basic Mechanics, Higher engineering Mathematics.

Rationale: The Purpose of this course is to focus on the basics of robotics, modeling, dynamics and control of robotic manipulators and its applications.

Teaching Scheme			C	Examination Marks				Total Marks		
L	T	P		Theory Marks		Practical Marks				
				ESE (E)	PA (M)	ESE (V)	PA (I)			
2	0	2	3	70	30	30	20	150		

Content:

Sr. No.	Contents	Total Hrs	Weightage %
1	<p>Introduction to Robotics: Definition, robot anatomy, Classification of Robots, Advantages and Disadvantages of Robots, Laws of robotics, Spatial coordinates, geometric configurations and work envelope; Machine intelligence; Applications and robot selection, safety, economic justification, future of robotics.</p>	04	24%
2	<p>Spatial Descriptions and Transformation: Descriptions: positions, orientations, and frames, Mappings: changing descriptions from frame to frame, Operators: translations, rotations, and transformations, Transformation arithmetic, Transform equations, Representation of orientation, Transformation of free vectors. Manipulator Forward Kinematics: Link Description, Link-Connection, Convention for Affixing Frames to Links, Manipulator Kinematics, Actuator Space, Joint Space, And Cartesian Space, Frames with Standard Names. Manipulator Inverse Kinematics: Solvability, Algebraic and Geometric Approaches, Degeneracy and Dexterity, Pieper's Solution When Three Axes Intersect, The Standard Frames, Solve-Ing A Manipulator, Repeatability and Accuracy.</p>	11	26%
3	<p>Jacobians: velocities and static forces: Velocities, Linear and rotational velocity of rigid bodies, Angular velocity, Motion of the links of a robot, velocity "propagation" from link to link,</p>	08	26%

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering
Subject Code: 3160317

	Jacobians, Singularities, Static forces in manipulators, Jacobians in the force domain, cartesian transformation of velocities and static forces. Trajectory generation: general considerations in path description and generation, joint-space schemes, cartesian-space schemes, path generation at run time, description of paths with a robot programming language, planning paths when using the dynamic model, collision-free path planning. Control of Robot Manipulator: Open and closed loop control system, Control system concepts, linear control schemes, PID control system, types of motion control, electric drives and motor control, planning of trajectories.		
4	Actuators: Characteristics of Actuating Systems, Comparison of Actuating Systems, Hydraulic and Pneumatics Devices, Electric Motors in Robotics. Sensors: Sensor Characteristics, Position Sensors, Velocity Sensors, Acceleration Sensors, Touch and Tactile Sensors, Proximity Sensors, Range Finder. End effectors: General design considerations, mechanical grippers, vacuum pads, electromagnets; End effector power sources.	07	24%
	Total	30	100%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
20%	30%	20%	20%	10%	0%

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1. Introduction to Robotics: Mechanics and Control, John J. Craig, Addison-Wesley Publishing Company, 3rd Edition, 2003.
2. Robotics Modelling, Planning and Control, Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Springer, 2009.
3. Introduction to robotics, analysis, control, applications, Saeed Benjamin Niku.
4. Introduction to Robotics, Subir Kumar, Saha, Tata McGraw-Hill Education, 2014.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering
Subject Code: 3160317

Course Outcomes:

After learning this subject, students will be able to:

Sr. No.	CO statement	Marks % weightage
CO-1	Understand the basics of robotic systems.	24%
CO-2	Formulate forward kinematics for design of basic robotics system.	13%
CO-3	Formulate inverse kinematics for design of basic robotics system.	13%
CO-4	Learn the math and computational methods necessary for controls of robot manipulators.	26%
CO-4	Familiarize with the most common robot Sensors & Actuators.	24%

List of Experiments:

Sr. No.	Name of Experiments	Duration (Hours)
1.	Study of Medical & Industrial robots and its applications.	2
2.	Simulation of Joint control stately for a desired end-effector position.	4
3.	Design/Simulate Robot dynamics (the forces acting on a robot and the resulting motion of the robot)	2
4.	Design/Simulate Rigid Body Tree Robot Model.	4
5.	Design/Simulate Pick and Place industrial manipulation application.	4
6.	Plan and execute task- and joint-space trajectories in MATLAB.	2
7.	Design/Simulate different robot kinematics models in an environment.	4

Major Equipment/Components: 2 DOF Robot, Rotary Servo Base Unit, Microcontroller Board, various motors and control unit, sensor kit