

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering

Subject Code: 3160311

Semester – VI

Embedded System for Medical Device

Type of course: Professional Elective Course - I

Prerequisite: Knowledge of Digital Electronics, Basic Electronics, C Language Programming, Microprocessor, Microcontroller & Applications.

Rationale: To familiarize students with concepts of Embedded Systems and give them knowledge about programming, interfacing, debugging and implementing stand-alone systems for a varied range of Biomedical Applications.

Teaching Scheme			Credits C	Examination Marks				Total Marks		
L	T	P		Theory Marks		Practical Marks				
				ESE (E)	PA (M)	ESE (V)	PA (I)			
3	0	2	4	70	30	30	20	150		

Content:

Sr. No.	Content	Total Hrs	% Weightage
1	Introduction to Embedded System: Overview of embedded systems, Characteristics of Embedded System, Classification of embedded systems, Application areas, Elements of Embedded System, Core of Embedded System, Classification of Program Memory and Working Memory, Onboard & External Communication Interfaces, Embedded Firmware, System Component	8	15
2	Operating System Components: Operating system service, Process management, Timer function, Event function, Memory management, Device, File and I/O subsystem management, Tasking and Scheduling Mechanism, Round - Robin, robin with Interrupts, function-One-Scheduling Architecture, Algorithms. Semaphores and shared Data Operating system Services-Message Queues-Timer Function-Events-Memory Management, Interrupt Routines in an RTOS environment, Basic design Using RTOS.	9	20

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering
Subject Code: 3160311

3	Introduction to RASPBERRY PI Overview of Raspberry Pi Platform, Applications, Board Specification, ARM vs x86 comparison, ARM Cortex -A53 Architecture, GPIO Configuration, Supported Operating System, Raspberry pi OS Setup, Advance Raspberry Pi configuration	9	15
4	RASPBERRY PI Programming Overview of Python Programming, Python IDE, Data types, Variables, Controlling Statement, Functions, Function as Objects, Modules, Exception handling, File read/write operation, Image read/write operation, Networking in Python, Audio playback on the RPi, Video playback on the RPi, Connecting a USB webcam, video streaming on the RPi. Case Study: Temperature and humidity Measurement, Bio-Signal Interfacing	9	25
5	Computer Vision with RASPBERRY PI Understanding of OpenCV, Installing OpenCV on an RPi board, working with images using OpenCV, matplotlib to visualize images, working with a USB webcam, Working of Pi camera module Basic of Image Processing: Basic Operation on Images, Arithmetic operations, Blending and transitioning Images, Negative Images, Bitwise Logical Operation	10	25
	Total	45	100%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
10%	20%	20%	15%	15%	20%

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1) Introduction to Embedded Systems by K.V.Shibu, 2nd Edition,McGraw Hill.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3160311

- 2) Embedded System: Architecture, Programming and Design by Rajkamal, 2nd edition, 2010, Tata McGraw Hill
- 3) An Embedded Software Primer by David E. Simon, Pearson Education Asia, First Indian Reprint 2000.
- 4) Raspberry Pi Computer Vision Programming by Ashwin Pajankar, 2nd Edition, Packt Publishing, 2020
- 5) Raspberry Pi User Guide by Eben Upton, Gareth Halfacree, John Wiley & Sons (2016)
- 6) Computer as Components: Principles of Embedded Computing System Design, Wayne Wolf, 2nd edition, 2008, Morgan Kaufmann Publication
- 7) Qing Li and Carolyn Yao, " Real Time Concepts for Embedded Systems – Qing Li, Elsevier ISBN:1578201241 CMP Books © 2003

Course Outcomes:

After learning the course, the students should be able to

Sr. No.	CO statement	Marks % weightage
CO-1	To understand the aspects of Embedded Systems.	15
CO-2	To learn the Essentials components of the Operating System.	20
CO-3	To learn the ARM Cortex -A53 Architecture and setup OS for the Raspberry pi.	15
CO-4	To learn and apply the programming skills for the open Source Platform.	25
CO-5	Perform image processing operation using OpenCV on RASPBERRY PI	25

List of Experiments:

Sr. No.	Name of Experiments	Duration (Hours)
1.	Introduction of Raspberry Pi 3 B model and installing operating systems.	2
2.	Interfacing Led Blinking using Raspberry Pi	2
3.	Interfacing Switch with Raspberry Pi – Python	2
4.	Interfacing DS18B20 Temperature sensor with Raspberry Pi	2
5.	Interfacing HC-SR501 PIR Motion Sensor with Raspberry Pi	2

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering
Subject Code: 3160311

6.	Interfacing HC-SR04 Ultrasonic Sensor with Raspberry Pi	2
7.	Interfacing surveillance Camera for Motion Capture with Raspberry Pi	2
8.	Installing and Setting Up OpenCV on an RPi board	2
9.	Capturing images and video with the webcam	2
10.	Capturing images and video using Picamera with Python	2
11.	Perform following operations on images with Python. • Arithmetic Operations • Transition operations • Negation of image • Logical Operations	2

Major Equipment:

- 1) Raspberry Pi 3 Model B Kit
- 2) Usb Camera/ Picamera
- 3) Biomedical Sensor Kit

List of Open Source Software/learning website:

- 1) <https://nptel.ac.in/courses/106105166/30>