GUJARAT TECHNOLOGICAL UNIVERSITY
Bachelor of Engineering
Subject Code: 3150703
ANALYSIS AND DESIGN OF ALGORITHMS
Semester V

Type of course: NA

Prerequisite: Programming (C or C++), Data and file structure

Rationale: Obtaining efficient algorithms is very important in modern computer engineering as the world wants applications to be time and space and energy efficient. This course enables to understand and analyze efficient algorithms for various applications.

Teaching and Examination Scheme:

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Credits</th>
<th>Examination Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Content:

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Course content</th>
<th>Total Hrs</th>
<th>%Weightage</th>
</tr>
</thead>
</table>
| 1 | Basics of Algorithms and Mathematics:
What is an algorithm?, Mathematics for Algorithmic Sets, Functions and Relations, Vectors and Matrices, Linear Inequalities and Linear Equations. | 02 | 2 |
| 2 | Analysis of Algorithm:
The efficient algorithm, Average, Best and worst case analysis, Amortized analysis, Asymptotic Notations, Analyzing control statement, Loop invariant and the correctness of the algorithm, Sorting Algorithms and analysis: Bubble sort, Selection sort, Insertion sort, Shell sort Heap sort, Sorting in linear time: Bucket sort, Radix sort and Counting sort | 08 | 20 |
| 3 | Divide and Conquer Algorithm:
Introduction, Recurrence and different methods to solve recurrence, Multiplying large Integers Problem, Problem Solving using divide and conquer algorithm - Binary Search, Max-Min problem, Sorting (Merge Sort, Quick Sort), Matrix Multiplication, Exponential. | 06 | 15 |
| 4 | Dynamic Programming:
Introduction, The Principle of Optimality, Problem Solving using Dynamic Programming – Calculating the Binomial Coefficient, Making Change Problem, Assembly Line-Scheduling, Knapsack problem, All Points Shortest path, Matrix chain multiplication, Longest Common Subsequence. | 05 | 15 |
| 5 | Greedy Algorithm
General Characteristics of greedy algorithms, Problem solving using Greedy Algorithm - Activity selection problem, Elements of Greedy Strategy, Minimum Spanning trees (Kruskal’s algorithm, Prim’s algorithm), Graphs: Shortest paths, The Knapsack Problem, Job Scheduling Problem, Huffman code. | 05 | 15 |
| 6 | Exploring Graphs: | 04 | 10 |
An introduction using graphs and games, Undirected Graph, Directed Graph, Traversing Graphs, Depth First Search, Breath First Search, Topological sort, Connected components.

7 Backtracking and Branch and Bound:
Introduction, The Eight queens problem, Knapsack problem, Travelling Salesman problem, Minimax principle

8 String Matching:

9 Introduction to NP-Completeness:
The class P and NP, Polynomial reduction, NP- Completeness Problem, NP-Hard Problems. Travelling Salesman problem, Hamiltonian problem, Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE

Suggested Specification table with Marks (Theory): 70

<table>
<thead>
<tr>
<th>Distribution of Theory Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Level</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom’s Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:
1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, PHI.
3. Fundamental of Algorithms by Gilles Brassard, Paul Bratley, PHI.
5. Foundations of Algorithms, Shailesh R Sathe, Penram

Course Outcome:
After learning the course the students should be able to:

1. Analyze the asymptotic performance of algorithms.
2. Derive and solve recurrences describing the performance of divide-and-conquer algorithms.
3. Find optimal solution by applying various methods.
4. Apply pattern matching algorithms to find particular pattern.
5. Differentiate polynomial and nonpolynomial problems.
6. Explain the major graph algorithms and their analyses. Employ graphs to model engineering problems, when appropriate.
List of Experiments:

1. Implementation and Time analysis of sorting algorithms.
 Bubble sort, Selection sort, Insertion sort, Merge sort and Quicksort
2. Implementation and Time analysis of linear and binary search algorithm.
3. Implementation of max-heap sort algorithm
4. Implementation and Time analysis of factorial program using iterative and recursive method
5. Implementation of a knapsack problem using dynamic programming.
7. Implementation of making a change problem using dynamic programming
8. Implementation of a knapsack problem using greedy algorithm
9. Implementation of Graph and Searching (DFS and BFS).
10. Implement prim’s algorithm
11. Implement kruskal’s algorithm.
12. Implement LCS problem.

Design based Problems (DP)/Open Ended Problem:

1. From the given string find maximum size possible palindrome sequence
2. Explore the application of Knapsack in human resource selection and courier loading system using dynamic programming and greedy algorithm
3. BRTS route design, considering traffic, traffic on road, and benefits

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.