

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - Semester 6 Minor Degree : Solar Energy Systems Subject Code : 116AJ01

Subject Name: Installation and Commissioning of Solar Plant

Prerequisite: Basic Electrical Engineering, Basic Electronics.

Rationale: The photovoltaic power plant installation and commissioning are one of important aspects of

off-grid and grid-tied solar photovoltaic power plants. The course is aimed to provide the knowledge and skills of the installation and commissioning, to assess the impact of shading on the performance of solar PV plants, Various MPPT algorithms, and about PV water pumping

systems.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				
L	Т	P	С	Theory Marks		Practical Marks		Total Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	0	30	0	100

Content:

Unit No.	Course Content	No. of Hours	
1	Orientation and Tilt of the solar PV panel, Measurement of the available area and required	04	
	area for the PV plant, Temperature Dependent Output of the PV module and array,		
	Measuring Shading at a Site.		
2	Analyzing Shading and Calculating Insolation of the year with and without partial	08	
	shading, PV Output Reduction Due to Shading, Requirement of Mechanical structure for		
	PV Plant, Installation and commissioning of the PV Plant, Electrical earthling and safety		
	requirement.		
3	PV array characteristic with partial shading condition, Difficulties of the conventional	04	
	MPPT tacking algorithm in partial shading conditions.		
4	Various Maximum power point tracking (MPPT) algorithms, Comparison of various	14	
	MPPT algorithm.		
5	Water pumping principle, Hydraulic energy and power, Total dynamic head, Centrifugal	12	
	and reciprocating pumps, PV and water pumping examples.		
Total Hrs.			

Suggested Specification table (Theory):

Distribution of Theory Marks (%)							
R Level	U Level	A Level	N Level	E Level	C Level		
20	15	10	25	30	0		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

POLOGICATUM ERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - Semester 6 Minor Degree : Solar Energy Systems Subject Code : 116AJ01

Subject Name: Installation and Commissioning of Solar Plant

Reference Books:

- 1. Deutsche Gesellschaft für Sonnenenergie (DGS). *Planning and installing photovoltaic systems: a guide for installers, architects and engineers*. Routledge, 2013.
- 2. Solanki, Chetan Singh. *Solar photovoltaics: fundamentals, technologies and applications*. Phi learning pvt. Ltd., 2015.
- 3. Burdick, Joseph, and Philip Schmidt. *Install your own solar panels: designing and installing a photovoltaic system to power your home*. Storey Publishing, 2017.
- 4. Rahman, Faz, and Wei Xu. Advances in solar photovoltaic power plants. Springer, 2016.

Course Outcomes : Upon completion of this course students should be able to:

No.	Course Outcomes	Marks % weightage
01	Analyze the effect of tilt angle on the PV output and determine optimal tilt according to latitude and longitude	10 %
02	Analyze the effect of partial shading on the solar PV output to understand the procedure of installation of the PV Plant	15 %
03	Understand problems associated of the MPPT algorithm associated with partial shading condition	10 %
04	Evaluate MPPT algorithm with and without partial shading and working principle of various off-grid and grid-tied inverter	35 %
05	Understand the solar pumping systems	30 %

List of Practical:

- 1. To show the effect of variation in tilt angle of PV module.
- 2. To demonstrate the effect of shading on module output power
- 3. Perform the experiment of manually finding the MPP by varying the resistive load across PV panel.
- 4. Perform the experiment of finding the MPP by varying the duty cycle of DC-DC converter.
- 5. Perform the experiment with MPPT algorithm and observe V_m , I_m , P_m and duty cycle at which MPP occurs.
- 6. Perform the experiment with different value of perturbation (delta D).