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Abstract: In South Africa, coal represents the primary source of energy used for electricity generation.
Coal power plants use the wet flue gas desulfurization (WFGD) process to remove sulfur dioxide
(SO2) from their flue gas. However, this technology produces a large amount of synthetic gypsum,
resulting in waste disposal and environmental pollution. This study investigated the physical,
chemical and geotechnical properties of WFGD gypsum and its potential application to develop
cement-free bricks. WFGD gypsum was collected from a coal power plant in South Africa. It was
found that the principal oxides of WFGD gypsum were sulfur trioxide (SO3) and calcium oxide
(CaO), which represented more than 90% of the total weight. Calcium sulfate (CaSO4) and calcium
di aluminate (CA2) were the predominant minerals in the raw material. The density of the WFGD
gypsum was 2.43 g/cm3. The maximum dry density and optimum moisture content values were
1425 kg/m3 and 18.5%, respectively. WFGD gypsum had a liquid limit of 51% but did not display
any plasticity characteristics. The optimum curing temperature of gypsum bricks was 40 ◦C. WFGD
gypsum-based bricks exhibited compressive strength of up to 2.3 MPa and a density of about 28%
less than that of typical clay bricks. Additionally, there was no significant decrease in compressive
strength after seven wet/dry cycles. These results show that WFGD gypsum could be used to
produce lightweight building materials with low strength requirements.

Keywords: gypsum waste; characterization; beneficiation; curing temperature; compressive strength;
bricks; microstructure; wet/dry cycles; leaching

1. Introduction

Human population growth and industrialization have led to a need to generate
more electric power [1]. Electricity plants commonly use coal as an inexpensive energy
source, but its combustion also causes air pollution. South Africa has the world’s highest
coal dependency for electricity generation [2–4]. Global warming has become one of
the most pressing issues in the 21st century, and it has been significantly influenced by
greenhouse gas concentration in the air. South Africa is ranked the second largest sulfur
dioxide (SO2)-emitting hotspot globally [3]. The technologies for flue gas cleaning systems
have undergone developments to reduce atmospheric emissions of hazardous substances.
An example of a technology developed is wet flue gas desulfurization (WFGD) [5]. The
process involves the removal of SO2 from flue gas using an alkaline sorbent, usually
limestone. Due to its high desulfurization efficiency and low operating costs, the wet
limestone system is the most commonly used [6]. However, this technique produces a large
quantity of synthetic gypsum, resulting in a problem with waste disposal and pollution.
The availability and production of synthetic gypsum will continue as long as thermal
power plants exist and use the WFGD process [7]. WFGD gypsum is produced in more
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than 225 million tons every year on a global scale. In 2008, US and European factories
produced almost 30 million tons of WFGD gypsum, of which less than 75% was recycled [8].
This problem necessitates plans to beneficiate, reuse and recycle these waste materials.

WFGD gypsum is mainly composed of sulfate dihydrate (CaSO4·2H2O) [6,9]. Syn-
thetic gypsum and natural gypsum have very similar chemical compositions and can
be used for similar purposes. There are many applications for gypsum as construction
material. Gypsum is the main ingredient in the production of plaster, blackboard chalk and
drywall [6,10]. Gypsum is also used as an admixture to control the setting time of Portland
cement (OPC) [10]. Several studies have reported the use of synthetic gypsum for different
applications [11]. Leiva et al. [12] showed that WFGD gypsum could be used to manufac-
ture wallboards. Prior to utilizing WFGD gypsum samples, they were calcined for 30 h at
140 ◦C to produce gypsum in its hemihydrate form (CaSO4·1/2H2O). A paste was prepared
with a different water/gypsum mass ratio in the range of 0.5–0.55. It was reported that
WFGD gypsum-based panels satisfied the EN 13279-1 minimum compressive strength re-
quirement of 2 MPa and had a higher thermal insulation capacity than commercial gypsum
panels. The proportion of CaSO4.1/2H2O was shown to be responsible for the obtained
mechanical properties. Similarly, Zhao et al. [13] demonstrated that water-resistant blocks
made using WFGD gypsum could be obtained. In this study, a combination of sodium
silicate, clinker and sodium sulfate was used as an activator. WFGD gypsum was initially
calcined to form b-semiwater gypsum. The results showed that the water resistance of
gypsum products was significantly enhanced by the addition of slag, fly ash and a liquid
activator. They concluded that the optimal properties were obtained by using a 0.56 wt %
waterproof modifier and a curing temperature of 60 ◦C for 16 h, as determined by the
orthogonal test. In the composite material, the main hydration products were ettringite
and calcium silicate hydrate (CSH). However, without the incorporation of a modifier,
hydration resulted in the formation of CaSO4·2H2O, resulting in the block’s low anti-water
resistance. Additionally, Guan et al. [14] investigated the effects of partial replacement of
natural gypsum by WFGD gypsum in calcium aluminate cement (CAC). Results indicated
that incorporation of WFGD gypsum shortened the setting and was beneficial for early
strength development. Two main hydration mechanisms, ettringite production and CAC
hydration, influence the hydration process in pastes comprising 5–15 wt % WFGD gypsum.
Ettringite formation regulated the hydration process in mixtures containing more than
20 wt % WFGD gypsum. Koper et al. [15] studied the “effect of calcined synthetic gypsum
on the setting time and particle size distribution of modified building materials. It was
found that the waste synthetic gypsum met the standard conditions related to its setting
time. Therefore, it may be a very good construction substitute for natural gypsum, and con-
sequently, it may contribute to environmental protection and the saving and respecting of
energy”. Recently, Phutthimethakul et al. [15] demonstrated that adding a small proportion
of synthetic gypsum increased the compressive strength of concrete bricks. For example,
the addition of 5.5 wt % gypsum gave 28-day compressive strength of up to 45.18 MPa.
Construction and demolition trash, as well as oil palm trunks, were employed as coarse
and fine aggregates, respectively, in this investigation.

The chemical composition of WFGD gypsum is mainly related to the proportion of
limestone used for the desulfurization process and the type of coal used in the boiler [5].
The latter characteristic has a significant effect on the reactivity of WFGD gypsum. [5,11,13].
The WFGD process is a new technology in South Africa, and due to the country’s reliance on
coal-fired electricity, WFGD gypsum production has increased significantly over the recent
year. The majority of this waste is disposed of in landfills, contributing to environmental
degradation. To the best of our knowledge, no studies have been conducted on beneficiating
WFGD gypsum produced locally. However, recycling WFGD gypsum to develop value-
added products could be beneficial to the country both economically and environmentally.
This work aimed to study the physical, chemical and geotechnical properties of local WFGD
gypsum and its potential application as a sole precursor to develop cement-free bricks.
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2. Materials and Methods
2.1. The Raw Material

WFGD gypsum was collected from a coal power plant in South Africa. The material
was oven-dried, then pulverized and homogeneously mixed using an Eriez Magnetic
Rotary Riffler.

2.2. pH and Density

A 30 g amount of the material was mixed with 100 mL of deionized water and stirred
continuously for 15 min, and then the pH was measured. The relative density of WFGD
gypsum was measured using a gas pycnometer

2.3. Geotechnical Properties
2.3.1. Sieve Analysis

A 700 g amount dry gypsum sample was used for sieve analysis. The sample was
pulverized to break the material into individual particles. Samples were washed using
a 2 mm sieve, and the remaining sample was determined. A stack of sieves with sizes 4.75,
2.00, 1.18, 0.60, 0.425, 0.300, 0.150 and 0.075 mm was prepared. A bottom pan was placed
under the sieve with a mesh size of 0.075 mm. The stack of sieves was shaken using a sieve
shaker for 10 min, and the material retained on each sieve was weighed.

2.3.2. Gradation

A 500 g amount of dry sample was sieved with a stack of sieves with apertures
(mm) 4.75, 2.36, 0.76, 0.45, 0.3, 0.15 and 0.075. The sample was poured into the stack of
sieves from the top. The stack of sieves was shaken using a sieve shaker for 15 min, and
material retained on each sieve was weighed. The gypsum retained on the 0.075 mm
sieve was washed and oven-dried. ASTM 152-H hydrometer procedure was followed
to determine the particle size distribution of finer particles. A 50 g amount of material
smaller than 0.075 mm was used for testing. A 4% solution of sodium hexametaphosphate
deflocculating agent was prepared, and 125 mL of the agent was then mixed with 50 g of
gypsum and allowed to soak for 12 h. An 875 mL volume of distilled water and 125 mL of
the deflocculating agent were thoroughly mixed in a 1000 mL cylinder. The temperature
of the blend was noted. A hydrometer was set inside the solution, and the recording was
taken as the zero correction. A spatula was then used to blend the gypsum/deflocculating
agent mix with the slurry being filled into another graduated 1000 mL cylinder with the
assistance of a plastic squeeze bottle. Purified water was then supplemented to the imprint.
A rubber stopper was placed on the top of the cylinder, and the gypsum/water blend was
mixed by turning the cylinder upside down several times. The cylinder was then placed
in the water bath at constant temperature next to the cylinder with deflocculating agent
and time was recorded immediately at time = 0.25 min, 0.5 min, 1 min, 2 min, 4 min, 8 min,
15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h and 48 h. For reading, the hydrometer was inserted
into the cylinder for approximately 30 s before the recording was done.

2.3.3. Compaction Test

The maximum dry density (MDD) and optimal moisture content of the raw material
were determined using the standard proctor compaction test, as per ASTM D698. A 6 kg
amount of oven-dried material was prepared and divided into 3 samples of equal mass.
Each sample was mixed with water to obtain a percentage of moisture content. The mixed
specimen was then placed into a 1 L mold in 3 layers, with each layer compacted uniformly
by the 2.5 kg proctor hammer 25 times. After compaction, the specimen was extruded from
the mold and weighed to determine its bulk density.
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2.3.4. Evaluation of Plasticity

The liquid limit (LL), plastic limit (PL) and plasticity index (PI) of WFGD gypsum
were determined using the Atterberg limits method as per ASTM D4318. Material passing
0.425 mm sieve was used throughout the test.

Linear shrinkage was determined as follows: 100 g of WFGD gypsum was mixed
with water to form a creamy paste and used to fill the shrinkage limit dish coated with
petroleum jelly, and the mass was determined. The dish was tapped to release any bubbles
and filled with about one-third until full. Samples were first evaluated visually before
exposure to an elevated temperature. Note that WFGD gypsum did not show any plastic-
ity characteristics.

2.4. Mix Proportions and Preparation of Bricks

Brick specimens were prepared by mixing WFGD gypsum with water. The water
content that gave MDD and OMC was used, which corresponded to a water to binder
ratio of 0.19. After mixing, the paste was poured into 50 mm cube molds and compacted.
The cube specimens were then cured at ambient temperature, and the highest unconfined
compressive strength was tested after 7, 14, 28, 54 and 90 days, respectively. To study
the effect of the curing temperature on the strength development of gypsum bricks, fresh
specimens after casting were also cured at different temperatures of 40, 80 and 100 ◦C for
96 h. After curing, the specimens were allowed to cool down, and UCS was determined.

To evaluate the durability performance of gypsum bricks, a wet and dry cycles test
was performed on selected cube specimens. Wet and dry cycle tests were conducted by
soaking the specimen in water for 24 h, followed by drying at 60 ◦C for 24 h. The procedure
was repeated 10 times, with the UCS of the specimen determined at each cycle.

Compressive strength of the cubes was determined using compression testing equip-
ment with a capacity of 2000 kN at a loading rate of 0.25 MPa/s until failure. Three com-
posite specimens were tested for every batch to ensure reproducibility of results.

2.5. Toxicity Characteristic Leaching Procedure (TCLP)

The environmental impact of the bricks obtained was assessed using TCLP. WFGD
gypsum was pulverized and leached with an extraction buffer of acetic acid and sodium
hydroxide (pH 4.93 ± 0.05) at a liquid/solid ratio of 20:1 [16]. A thermostatic shaker was
utilized for the extraction, and the cured composites were subjected to 24 h shaking at
25 ± 2 ◦C. Samples were then filtered and analyzed for the concentration of heavy metals
using atomic absorption spectroscopy (AAS).

2.6. Analytical Techniques

The chemical composition of the raw material was determined using a dispersive
X-ray (XRF) spectrometer operating with a rhodium X-ray tube. Mineralogical analysis was
performed using SHINGAKU diffractometer set at 40 kV voltage and 40 mA current, with
monochromated CuK α radiation of λ = 1.54056 Å. A scanning rate of 0.017 degrees per
second was used over the 2 θ range of 4–100 deg. The FTIR analysis was performed using
the Shimadzu FTIR 8400 spectrometer. Specimens for FTIR analyses were prepared using
the potassium bromide (KBr) pellet technique. Microscopy investigation was performed
using a scanning electron microscope (SEM)-coupled EDS detector.

3. Results and Discussion
3.1. Physicochemical Properties of WFGD Gypsum
3.1.1. pH and Relative Density

The pH and relative density of WFGD gypsum were 7.2 and 2.43 g/cm3, receptively.
The pH of the WFGD gypsum substantially affects the unconfined compressive strength
(UCS) of the resulting bricks. Usually, a pH above 10 is beneficial for strength develop-
ment [17,18]. The values of pH and the relative density obtained are similar to those
reported in the literature [19,20].
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3.1.2. Chemical and Mineralogical Composition

The chemical composition of WFGD gypsum is reported in Table 1. WFGD gypsum
is mainly composed of CaO (50.8 wt %) and SO3 (42.7 wt %), followed by SiO2 and MgO
oxides, which count only for 2.0 and 1.06 wt %, respectively. The rest of the elements, such
as P2O5, Fe2O3, F, TiO2 and MnO, existed in trace (≤1.0 wt %). The high amount of CaO
within the WFGD gypsum could be beneficial, as it can contribute to the pozzolanic reaction
by improving the performance at later ages [21]. Similar content of CaO was recorded on
natural gypsum from the findings of [22]. Moreover, the SO3 content in WFGD gypsum
could affect the setting time when incorporating the OPC depending on its dosages as
increasing the heat of hydration followed by the improvement of strength, as observed by
Jelini et al. [23]. In addition, the presence of fluorine could also influence the setting time,
leading to a decrease in UCS [24]. The chemical composition of WFGD gypsum is similar
to previous works, suggesting its use as construction material [25–27].

Table 1. Elemental composition of WFGD gypsum.

Component WFGD Gypsum (wt %)

F 0.42
MgO 1.06
Al2O3 1.1
SiO2 2.0
P2O5 0.02
SO3 42.7

Fe2O3 0.64
CaO 50.8
TiO2 0.1
MnO 0.6

Figure 1 displays the mineral phases contained in WFGD gypsum. The main crys-
talline phase of WFGD gypsum was gypsum (G), followed by the calcium di aluminate (CD)
mineral. Also, some reflection peaks of coesite (C) and yttrium (Y) oxide were recorded as
minor mineral phases. The present result (XRD) demonstrated that the prominent reflec-
tion peak in the WFGD gypsum corresponds to calcium sulfate (CaSO4), with a content
of 90%. This agrees with the XRF results reported in Table 1, which also showed CaO
and SO3 as the predominant constituents in WFGD gypsum. A similar observation was
reported by Green (2000). Furthermore, Wu et al. [28] detailed in their findings that the
presence of calcium di aluminate accelerates the setting time of the material and improves
its resistance to chemical attack. Among the impurities detected in WFGD gypsum was
coesite (SiO2), a mineral generally used in the industrial production of glass and other
construction constituents [29].

The infrared spectrum describing the chemical bonding within the WFGD gypsum
is depicted in Figure 2. The pronounced absorption band exhibiting high intensity cen-
tered at 1108 cm-1 and 664 cm−1 corresponds to the typical vibration modes of gypsum
hydrate [30,31]. The formation of these bands belonging to gypsum mineral correlates
with the results of the XRD analysis. The broad absorption bands at 3398–3502 cm−1 and
1614–1686 cm−1 correspond to H-O stretching and bending H-O-H of water molecules,
respectively [31,32]. The absorption band located at 876 cm−1 is attributed to the vibration
of the CO3

2− group [33]. Additional detected absorption bands at 2359 and 2344 cm−1 are
attributed to the stretching of CH3 or CH2 groups [31].
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Figure 2. FTIR spectrum of WFGD gypsum.

The SEM and EDS results of raw WFGD gypsum are shown in Figure 3. The mi-
crostructure is mainly composed of coarse particles turbulently dispersed in the matrix.
The occurrence of twinning structure, asymmetrical particle shapes, rounded fragments
and their agglomerates are typical to gypsum crystals detected in the study done by Sharpe
and Cork [34]. It is also noticed many lamellar crystals, a couple of quantities of thin
prismatic. As indicated by Wahed et al. [35], a large tabular and pseudohexagonal molecule
is gypsum. The infrequent molded chips on the raw WFGD gypsum represent unburnt
carbon typically observed as flat, lamellar, transitional and granular particles, validating
that the WFGD gypsum used in the present study has similar characteristics with other
WFGD gypsums in the literature [36]. It is illustrated from the EDS spectra that the major
elements such as calcium and silica are available, suggesting cementitious properties of the
gypsum material [28]. A similar observation has been reported by Wu et al. in their finding
based on industrial byproduct gypsum, which showed the presence of calcium and silica
as major available elements detected from EDS analysis.
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3.1.3. Toxicity Characteristic Leaching Procedure (TCLP)

The leachability of the metals was assessed to determine the viability of using WFGD
gypsum. The leaching results of WFGD gypsum (Table 2) showed that the concentration
of heavy metals released such as Mn, Cu, Mg, Fe, Al and Cr was negligible and within
the limits specified. These results agree with those reported in the literature, indicating
that the use of WFGD gypsum for different applications would not contaminate the
environment [37,38].

Table 2. Leachability of metals from the WFGD gypsum.

Element (%m/m) WFGD Gypsum

Mn 0.47
Cu 1.56
Mg 1.50
Cr 0.01
Al 0.08
P 0.19
Fe 2.8

3.2. Geotechnical Characterization of WFGD Gypsum
3.2.1. Particle Size Distribution

Figure 4 illustrates the gradation curve of WFGD gypsum. The average particle
diameters D10, D30 and D60 were 0.075, 0.10 and 0.15 mm, respectively. Thus, WFGD
gypsum mainly consisted of finer particles, as reported in the literature [39]. The uniformity
coefficient (Cu) and the coefficient of curvature (Cc) of WFGD gypsum were 2.2 and 1.3,
respectively. These coefficients were calculated using Equations (1) and (2). For soil to
be considered well graded, the value of Cu should be greater than 4, and Cc should lie
between 1 and 3. Accordingly, WFGD gypsum was classified as poorly graded.

Cu =
D60
D10

(1)

Cc =
1

D10 × D60
×D2

30 (2)
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Figure 4. Average gradation of WFGD gypsum.

The volume particle size distribution of WFGD gypsum (Figure 5) is a bimodal volume
distribution, with most of the volume of fine particles between 4 and –100 µm. Note that
the finer particles could improve the compressive strength due to the particle packing
effect [40,41].
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3.2.2. Maximum Dry Density (MDD) and Optimum Moisture Content (OMC)

Figure 6 gives the compaction curve of WFGD gypsum. The results showed that
WFGD gypsum was found to have a maximum dry density (MDD) of 1425 kg/m3 and
optimum moisture content (OMC) of 18.5%. The low value of MDD obtained in this
study indicates that WFGD gypsum-based bricks are expected to exhibit a low density and
poor performance.
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3.2.3. Liquid Limit and Plastic Limit Tests

The liquid limit of WFGD gypsum was 51%. WFGD gypsum exhibited nonplastic
characteristics. The plastic limit is the moisture content (%) at which a strand of soil will
crumble when rolled to a length of 3.18 mm [42]. This lack of plasticity suggests that the
clay content was very low [43]. However, despite the low plasticity of WFGD gypsum,
it can absorb water just like clay [44]. WFGD gypsum composition varies from plastic to
liquid at higher moisture content; consequently, it demands more water for the change to
occur [45].

3.2.4. Linear Shrinkage

The material was further tested for shrinkage according to ASTM D4943. In this study,
shrinkage was assessed through macroscopic contraction of the sample by oven drying
the WFGD gypsum mortar and evaluating volume changes. The evolution of the chemical
shrinkage indicates faster hydration. WFGD gypsum did not show any signs of shrinkage,
indicating that WFGD gypsum specimens have high-volume stability with fewer cracks
occurring under drying conditions [46]. This result confirms the nonplastic characteristic
exhibited by WFGD gypsum during the plastic limit test. Additionally, the absence of
shrinkage suggests the potential of using this waste product as an additive to the improved
swelling performance of expansive soils [47].

3.3. Characterization of WFGD Gypsum-Based Bricks
3.3.1. Effect of Curing Time
UCS

Figure 7 shows the effect of long-term curing on the UCS of WFGD gypsum bricks.
The long curing did not significantly affect the strength development of the WFGD gypsum
material. Increasing the curing age from 7 to 90 days led to an increase in UCS of only 3.1%.
This low compressive strength indicates that WFGD gypsum has a very low reactivity at
ambient temperature. Nevertheless, the slight strength improvement is related to hydration
with C-S-H and ettringite formation in the binder matrix [48,49]. The optimum UCS of the
WFGD gypsum is 53% greater than that recorded in the study by Liu et al. [50]. In addition,
the developed specimen had a weight of 160 g, which represents a mass 28% smaller than
that of a typical clay brick of similar size [51]. Moreover, the highest UCS of 1.99 MPa
exhibited by the bricks is above the minimum of 1.5 MPa as specified in SANS 10145
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for Class III mortar. Therefore, gypsum bricks could potentially be used as lightweight
materials for building and construction applications.
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Figure 7. UCS of WFGD gypsum bricks at various curing times.

Mineralogy

XRD analysis of WFGD gypsum cured at different ages is presented in Figure 8.
The typical mineral phases contained in all six samples are gypsum and quartz. The
analysis shows that the main reflection peak in the WFGD gypsum corresponds to calcium
sulfate (CaSO4), with content over 80% in agreement with the existing literature [52–54].
A significant increase in UCS is observed when WFGD gypsum was cured for 90 days.
When WFGD gypsum is cured at elevated temperature, there are small reflection peaks
of sillimanite formed, and their intensities increase with the temperature rise, resulting in
a positive impact on strength development.
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FTIR Analysis

Figure 9 displays FTIR spectra of raw WFGD gypsum and WFGD gypsum bricks cured
at ambient temperature for different days. The broad absorption band located at 1223 cm−1

is assigned to the C–O stretching mode of the carbonate group (CO3
2−) and a band at

693 cm−1 attributed to the bending mode of gypsum. The sturdy band positioned at
1240 cm−1 and the minor peaks at 640 cm−1 are also allotted to the stretching and bending
modes of sulfate, as seen in the pure gypsum spectrum [31]. The bands at 1200 cm−1 and
873 cm−1 are related to the irregular Si-O-Si stretching vibrations and O-Si-O bending
vibrations, respectively. There is an occurrence of O=C=O stretching bands, which appear
at 2400 cm−1, except on the WFGD gypsum cured for 90 days. The disappearance of the
O=C=O stretching strong bands is a result of insignificant UCS growth [55].
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SEM/EDS Analysis

Figures 10 and 11 show the SEM and EDS analysis of WFGD gypsum cured at dif-
ferent ages for a more extended period. As presented in Figure 10, brick specimens had
a heterogeneous microstructure that became more compact with increasing curing time.
The specimens cured for 90 days displayed a denser microstructure than other gypsum
brick samples. This observation corroborates the highest compressive strength reached
following a 90-day curing period. However, after an extended curing time, the shape
of raw gypsum particles remained unchanged, indicating a low degree of hydration in
the brick specimens [56]. In Figure 11, the intensity belonging to the reflection peaks of
C-S-H increased from an early age to later ages. The decrease in the Mn, Fe and K peaks
was witnessed when the material was cured for a more extended period under ambient
temperature, thus positively enhancing the UCS.
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3.3.2. The Effect of Curing Temperature
UCS

Figure 12 displays the results of UCS recorded on WFGD gypsum bricks cured at
various temperatures. It can be seen that UCS data varied between 1.64 and 2.3 MPa.
Increasing the curing temperature from 40 to 100 ◦C reduced the UCS by 28.7%. The
reduction in strength could be attributed to the formation of voids and cracks resulting from
the evaporation of water when the material is cured at high temperatures [57,58]. The trend
in strength evolution with curing temperature is consistent with the existing literature that
claims that gypsum boards shrink and crack when exposed to high temperatures [59,60].
The highest compressive strength of 2.3 MPa was achieved at the curing temperature
of 40 ◦C. According to Delgado and Guerrero [61], the minimum UCS for the material
used in non-load-bearing walls ranges between 1.3 and 2.1 MPa. This shows that WFGD
gypsum bricks are suitable to be used as non-load-bearing walls, according to SANS
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10400. However, the cracking of gypsum-based materials at high temperatures affects their
thermal stability and cannot be overlooked when estimating the heat resistance of WFGD
gypsum board assemblies.
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Figure 12. UCS of WFGD gypsum bricks at various curing temperatures.

Mineralogy

Figure 13 shows XRD analysis of raw WFGD gypsum and WFGD gypsum specimens
cured at elevated temperatures (40, 80 and 100 ◦C). XRD results show that the principal
constituents of the binder were gypsum, calcium dialuminate, coesite and sillimanite. The
quartz mineral is present due to the fine aggregate particles passing through the sieve
when preparing the material. For the sample cured at 40 ◦C, high reflection peaks of quartz
mineral were observed, which contributed to better cohesion with the CSH binding phase,
reinforcing the matrix justifying the high strength achieved. This could be the reason why
the highest UCS was obtained at 40 ◦C. A similar result was reported in the study by
Hoy et al. [62]. Furthermore, the peak intensity of gypsum decreased when the curing
rose from 40 to 100 ◦C, indicating that this mineral was consumed during the hardening at
high temperatures.
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FTIR Analysis

Figure 14 illustrates the FTIR spectra of WFGD gypsum specimens cured at 40 ◦C,
80 ◦C and 100 ◦C. It is noticed that the differences in intensities of absorption bands
observed in Figure 14 with raw WFGD gypsum have less intensity compared to that
cured at 100 ◦C, which exhibits the highest intensity. This behavior could be likely due
to the formed γ-CaSO4 as a result of heating. The main peak at 1100 cm−1 is assigned
to the sulfate in gypsum [30]. The higher the curing temperature, the higher the peak at
1100 cm−1, which is due to interactions with major CaSO4 components. Differences in the
shape and altitude of the peaks may be due to hydration or the presence of other atoms
other than calcium, especially when heated at higher temperatures [53]. The peak at about
875 cm−1 for all the graphs corresponds to the vibrational modes of the carbonate group.
The far-reaching absorption at 980 cm−1 is associated with the regular and irregular S–O
widening modes (Moutaz, 2005).
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SEM/EDS Analysis

The SEM and EDS analysis of WFGD gypsum cured at elevated temperatures is
shown in Figures 15 and 16, respectively. The results validate that gypsum’s crystals are
not systematic nor homogeneous. As indicated by Wahed et al. [35], large tabular and
pseudohexagonal molecules signify gypsum. The irregular-shaped chips on the micrograph
of raw gypsum Figure 9 represent unburnt carbon from coal typically observed as flat,
lamellar, transitional and granular particles [52]. When gypsum was cured at 40 ◦C, the
gypsum particles were turbulently distributed in the matrix. Constituents that enhance
the cementation properties of the material, such as calcium and silica, are available in raw
WFGD gypsum (Figure 16). Sulfur (S) and phosphorus (P) were also present in the raw
gypsum and can impact the strength development. For gypsum bricks cured at 40 ◦C,
strong peaks of Si, Al, Ca and Mg are seen in the EDS spectra. These elements are associated
with the formation and stability of CSH, the primary binding phase [63,64]. The peaks of Al,
Si and Mg decreased as the curing temperature rose from 40 to 80 ◦C. This reduction could
be attributed to a change in the CSH structure, resulting in poor strength development [65].
Similarly, Gallucci et al. [66] reported that when curing temperatures were increased, the
microstructure of the cement paste was significantly coarser and more porous, resulting in
lower final strengths.
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3.3.3. The Durability of WFGD Gypsum Bricks

Figure 17 shows the durability performance of WFGD gypsum specimens cured at
ambient temperature for 90 days. The effect of wet and dry cycles on UCS development
was investigated. The wet and dry test was carried out for 10 cycles. It can be seen that
after the seventh cycle, there was a significant reduction in the UCS due to the specimens’
porosity, which resulted in water ingress during soaking. The obtained results show that
the developed WFGD gypsum specimens can withstand seven wet and dry cycles and
make them potential materials for construction [67]. This result matches quite well with
the observations of others, confirming their use in hot and dry climates [68,69].
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4. Conclusions

In this study, the physical, chemical and geotechnical properties of WFGD gypsum
were investigated. The raw material was also used to prepare cement-free bricks. It was
found that WFGD gypsum consisted mainly of sulfur and calcium, which had a total
weight of more than 90%. The density of WFGD gypsum was 2.43 g/cm3, and its pH
was neutral. The material is mainly composed of fine particles, and it was classified
as poorly graded. WFGD gypsum had a liquid limit of 51% but did not display any
plasticity characteristics. The maximum dry density and optimum moisture content of
WFGD gypsum were 1425 kg/m3 and 18.5%, respectively. WFGD gypsum-based bricks
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exhibited a low strength development at ambient temperature. Higher curing temperatures
were detrimental to the strength development of WFGD gypsum because of the formation
of cracks within the material. A maximum UCS of 2.3 MPa was obtained at a curing
temperature of 40 ◦C. The durability test showed that WFGD gypsum bricks can withstand
seven wet/dry cycles without a significant decrease in compressive strength. The relatively
low strength indicates that the brick could be used in non-load-bearing walls as per SANS
10400. Due to the poor reactivity of the WFGD gypsum utilized in this investigation,
the following recommendations are suggested. It is worth considering blending WFGD
gypsum with other cementitious materials such as fly ash and slag. Additionally, the
pretreatment of WFGD gypsum should be examined using thermal or mechanical activation
to alter its reactivity.
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