LL(1) Grammars

LL(1) Grammar

- A grammar is LL(1) if it is possible to choose the next production by looking at only the next token in the input string.
- The first "L" in LL(1) stands for scanning the input from left to right.
- The second "L" stands for producing a leftmost derivation.
- The "1" stands for using one input symbol of lookahead at each step in making parsing action decisions.

Definition of LL(1) Grammar

- Formally, grammar G is LL(1) if and only if
 - For all productions $A \rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_n$, First $(\alpha_i) \cap$ First $(\alpha_i) = \emptyset$, $1 \leq i, j \leq n, i \neq j$.
 - For every nonterminal A such that First(A) contains ε , First(A) \cap Follow(A) = \emptyset .

Or, stated another way...

- A grammar G is LL(1) if and only if all pairs of productions A → α and A → β satisfy the following conditions:
 - First(α) and First(β) are disjoint, and
 - if one of α or β derives ϵ (assume $\alpha \Rightarrow \epsilon$), then First(β) and Follow(A) are disjoint.

- $E \rightarrow TE'$
- $E' \rightarrow +TE' \mid \epsilon$
- $\mathsf{T}\to\mathsf{F}\mathsf{T}'$
- $T' \to {}^*FT' \mid \epsilon$
- $\mathsf{F} \rightarrow (\ \mathsf{E} \) \mid \text{id}$
- First (E) = First (T) = First (F) = { (, id }
- First (E') = { +, ε }
- First (T') = { *, ε }
- Follow (E) = Follow (E') = { \$, } }
- Follow (T) = Follow (T') = { +, \$, } }
- Follow (F) = { *, +, \$, } }

- To determine if a grammar is LL(1), we need look at only nonterminals which have multiple productions.
- $E' \rightarrow +TE' \mid \epsilon$
 - First(+TE') = {+}; First(ϵ) = { ϵ }. First(+TE') and First(ϵ) are disjoint
 - Since First(E') includes ε, we must check if First(E') and Follow(E') are disjoint.
 First(E') = {+, ε} and Follow(E') = {\$, }} are disjoint.

- $T' \rightarrow *FT' \mid \epsilon$
 - First(*FT') = {*}; First() = {ε}. These sets are disjoint.
 - Since First(T') = {*, ε} includes ε, we must check if First(T') and Follow(T') are disjoint. Since Follow(T') = { +, \$,) }, it is clear that the two sets are disjoint.

- $F \rightarrow (E) \mid id$
 - First ((E)) = { (}; First (id) = { id }. These sets are disjoint.
 - Neither right hand side derives ε, so the second condition is trivially true.
- Since all pairs of productions A → α and A → β satisfy both conditions of the definition, the expression grammar is LL(1).

A Grammar That Is Not LL(1)

• The grammar $A \rightarrow dA$ $A \rightarrow dB$ $A \rightarrow f$ $B \rightarrow g$ is not LL(1): First(dA) \cap First(dB) = {d} $\neq \emptyset$

Another Grammar That Is Not LL(1)

- The grammar below is not LL(1):
 - $\hspace{0.1 cm} S \rightarrow X \textbf{d}$
 - $X \to C$
 - $X \to Ba$
 - $C \rightarrow \epsilon$
 - $B \rightarrow d$
- Consider the productions X → C and X → Ba. Since C ⇒ ε, then First(Ba) and Follow(X) must be disjoint. Since First(Ba) = {d} and Follow(X) = {d} are not disjoint, the grammar is not LL(1).