BHARATHIAR UNIVERSITY :: COIMBATORE – 641 046

M.Sc. BIOTECHNOLOGY (UNIVERSITY DEPT.)

(For the students admitted during the academic year 2015–2016 batch & onwards)

SCHEME OF EXAMINATION-CBCS Pattern

<table>
<thead>
<tr>
<th>Semester</th>
<th>Paper</th>
<th>Subject</th>
<th>Hrs / week</th>
<th>University exam Dur/ Hrs</th>
<th>INT.</th>
<th>EXT.</th>
<th>Total Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14BIOBC01</td>
<td>Paper-I</td>
<td>Biochemistry</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC02</td>
<td>Paper - II</td>
<td>Cell and Molecular Biology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC03</td>
<td>Paper - III</td>
<td>Microbiology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC04</td>
<td>Paper – IV</td>
<td>Genetics</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOGE01A</td>
<td>Elective - 1</td>
<td>Bio prospecting / Bioinstrumentation</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOGS01</td>
<td>Supportive-1</td>
<td>Offered from other Departments</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>38</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>14BIOBCP1</td>
<td>Practical - I</td>
<td>Basic Biotechnology</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14BIOBC05</td>
<td>Paper – V</td>
<td>Developmental Biology and Physiology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC06</td>
<td>Paper – VI</td>
<td>Immunology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC07</td>
<td>Paper - VII</td>
<td>Bioprocess Technology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC08</td>
<td>Paper - VIII</td>
<td>System Biology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOGE02A</td>
<td>Elective - 2</td>
<td>Pharmaceutical Biotechnology / Environmental Biotechnology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOGE02B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14BIOGS02</td>
<td>Supportive-2</td>
<td>Offered from other Departments</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>38</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>14BIOBCP2</td>
<td>Practical –II</td>
<td>Advanced Biotechnology</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer Training*</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>SEMESTER III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14BIOBC09</td>
<td>Paper - IX</td>
<td>Animal Biotechnology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC10</td>
<td>Paper - X</td>
<td>Recombinant DNA Technology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC11</td>
<td>Paper - XI</td>
<td>Plant Biotechnology</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOBC12</td>
<td>Paper - XII</td>
<td>Stem Cell Biology and Tissue Engineering</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOGE03A</td>
<td>Elective -3</td>
<td>Cancer Biology / Biosafety Bioethics & IPR</td>
<td>4</td>
<td>3</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>14BIOGE03B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14BIOGS03</td>
<td>Supportive -3</td>
<td>Offered from other Departments</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>38</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>14BIOBCP3</td>
<td>Practical - III</td>
<td>Applied Biotechnology</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>
SEMESTER IV

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industrial Visit**</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Project Work***</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Summer Training:

All the students have to undergo summer training for period of minimum 30 days. Final reports have to submit which will be evaluated.

** Industrial visit:

Students have to undertake an industrial /institutional visit and have to submit report for evaluation

***Project work:

The report is the bonafied work carried out by the candidate under the guidance of a faculty authenticated and countersigned by the HOD. This project work must be presented and defended by the candidate in the department attended by all faculties and reviewed by external examiner. Candidate who has presented the work as ‘Not qualified as per CBCS’ must resubmit the project again in the ensuing academic year.

SUPPORTIVE PAPERS OFFERED FOR OTHER DEPARTMENT STUDENTS:

- Paper I : Tools in Biotechnology
- Paper II : Medical Biotechnology
- Paper III : Plant Molecular Farming
BIOCHEMISTRY

Course Number: 14BIOBC01 Number of Credits: 4 (Four)

Scope: This paper presents the study of identification and quantitative determination of the substances, studies of their structure, determining how they are synthesized metabolized and degraded in organisms, and elucidating their role in the operation of the organism.

Objective: On the successful completion of the course the students will get an overall understanding of structure of atoms, molecules and chemical bonds, enzyme kinetics, bio polymers and metabolic reactions in a living system.

Goal: This paper in biochemistry has been designed to provide the student with a firm foundation in the biochemical aspects of cellular functions which forms a base for their future research.

UNIT I

Energy metabolism (concept of free energy); Principles of thermodynamics; Kinetics, dissociation and association constants; energy rich bonds; weak interactions; coupled reactions and oxidative phosphorylation; group transfer; biological energy transducers; bioenergetics.

UNIT II

Proteins: Amino acids and peptides-classification, physico-chemical properties. Peptide bond, Primary structure of proteins, structural comparison at secondary and tertiary levels (Ramchandran map), conformation of proteins and polypeptides (secondary, tertiary, quaternary and domain structure). Silk fibroin, coiled coils, collagen triple helix and hemoglobin. Denaturation and renaturation of proteins. Lysozyme- structure, enzymic activity, mechanism of lysozyme action

Lipids: Classification, structure and functions. Triglycerides; Phospholipids; Steroids and terpenes. Lipoproteins - structure and function. Role of lipids in biomembranes.

UNIT III
Enzyme Nomenclature; Enzyme kinetics (negative and positive cooperativity); Ordered and ping pong mechanism; Regulation of enzymatic activity; Enzyme catalysis. Active sites; Enzymes and coenzymes: Coenzymes interactions: activators and inhibitors, kinetics of enzyme inhibitors, isoenzymes, allosteric enzymes; Ribozyme, hammer head, hair pin and other ribozymes, strategies for designing ribozymes. Abzyme: structure and drug targets (enzymes and receptors); Drug development; Prodrug delivery using enzymes; Bioluminescence

UNIT IV

UNIT V
Glycolysis and TCA cycle; Glycogen breakdown and synthesis; Gluconeogenesis; interconversion of hexoses and pentoses: Co-ordinated control of metabolism; Biosynthesis of purines and pyrimidines; Oxidation of fatty acids; Biosynthesis of fatty acids; Triglycerides; Phospholipids; Sterols.

References:
5. Biochemistry – Zubay , WCB publishers
CELL AND MOLECULAR BIOLOGY

Course Number : 14BIOBC02

Number of Credits: 4 (Four)

Scope: This paper provides a thorough knowledge about structure and function of cells, cellular energetics, protein trafficking, bio molecules and cellular development.

Objective: Understanding the structural and functional aspects of the cell provides the student with a strong foundation in the molecular mechanisms underlying cellular function.

Goal: Students after completion of this paper will be exceptionally well prepared to pursue careers in cellular and sub cellular biological research, biomedical research, or medicine or allied health fields.

UNIT I
Structure and function of cells in prokaryotes and eukaryotes; Structure and organization of Membrane - Model membranes, Glyco conjugates and proteins in membrane systems; Response to stress - active and passive, transport channels and pumps, Neurotransmission, neuromuscular junction. Extra cellular matrix – cell to cell and cell matrix adhesion – selectins, integrins, cadherins, gap junctions.

UNIT II
Mitochondria – structure, biogenesis; Chloroplast – structure, biogenesis; Molecular events of electron transport chain, ATP synthesis, photosynthesis and photorespiration. Structure of Endoplasmic reticulum, Golgi complex, lysosomes; protein synthesis and post translational modification; of proteins vesicular transport and import into cell organelles

UNIT III
Oxidative reactions in microbodies and nucleus. The nucleosome, the supranucleosomal structures. Nucleic acid structure: DNA and RNA; DNA replication; transcription and translation. Gene regulation: prokaryotic gene regulation- Operon concept; lac operon and tryptophan operon; Eukaryotic gene regulation: transcriptional and translational regulations.

UNIT IV

UNIT V
Cellular signaling; cell differentiation; gametogenesis and fertilization; life cycle and molecular biology of some pathogens – AIDS virus, tuberculosis, malarial parasite, hepatitis virus, filarial parasite and kalazar parasite.
Techniques (Self Study):
Radiolabelling techniques: Properties of different types of radioisotopes normally used in biology, their detection and measurement; incorporation of radioisotopes in biological tissues and cells, molecular imaging of radioactive material, safety guidelines.

References:

MICROBIOLOGY

Course Number: 14BIOBC03 Number of Credits: 4 (Four)

Subject Description:
Scope: This paper provides the knowledge about different types of microorganisms and their identification techniques in modern biology and there by the usefulness of the techniques in research and commercial purposes.

Objectives: In order to make the students to understand the identification of microorganisms using advanced microbiological methods and applications of microorganisms.

Goal: Students can gain the idea of how to identify the microorganisms based on the modern polyphasic approach.

UNIT – I
UNIT – II
Molecular Taxonomy: Molecular systematics: Polyphasic approach – 16S rRNA gene sequencing, Phylogenetic grouping. Techniques used in taxonomy – Mol % G+C analysis, DNA-DNA hybridization, Fatty Acid Methyl Ester (FAME) analysis, peptidoglycan, Isoprenoid and quinones. BIOLOG (Physiological) and MALDI TOF based Microbial Identification.

UNIT – III
Metagenomics – culture independent studies: Molecular methods to study complex microbial communities: construction of small insert and large insert metagenomic libraries, DGGE, TGGE, SSCP, T-RFLP, FISH – cloning for functional metagenomics: Screening for cellulose-encoding clones in metagenomic libraries, screening metagenomic libraries for laccase activity

UNIT – IV

UNIT – V
Medical Microbiology:
Bacterial Diseases: Host-parasite relationship, epidemiology, pathogenesis, prevention and treatment – Gram positive cocci; *Staphylococcus* and *Micrococcus*; *Streptococcus*; *Enterococcus*. Gram positive rods – Coryneforms, *Mycobacterium*. Gram negative rods - *Klebsiella, Salmonella, Shigella, Neisseria, Haemophilus* and *Pseudomonas*

Viral Diseases: Epidemiology, pathogenesis, prevention and Treatment - H1N1, Polio, Rabies, Hepatitis, AIDS, Herpes virus infections, Dengue fever, Chikungunya

Fungal Diseases: Infections caused by yeast: *Candida* and *Cryptococcus neoformans* – Filamentous Fungi: *Aspergillus* sp. infection, Dermatophytic infections

Protozoan Diseases: Malaria, Leishmaniasis, Trypanosomiasis, *Ascaris* infection
Diagnostic of infectious diseases: Immunoassays, molecular detection and identification using variants of PCR.

REFERENCES:
1. Lansing M. Prescott. Microbiology.
12. Baron, Peterson and Finegold. Diagnostic Microbiology.

GENETICS

Course Number: 14BIOBC04 Number of Credits: 4 (Four)

Scope: This paper in genetics has been structured to give the student an in depth knowledge of the organization of the genome in prokaryotes and eukaryotes, the principles of genetic inheritance and other vital aspects such as Hardy Weinberg law, pedigree analysis and the genetic basis of disease inheritance.

Objective: The major objective of the paper is to envisage thorough knowledge in genetics and genome organizations in organisms.

Goal: After successful completion of the paper the students will get an overall view about genetic makeup of organisms and can take up a career in research.

UNIT I
Genome Organization in prokaryotes: genome of bacteria, bacteriophage and viruses, plasmids. The fine structure of a prokaryote gene; Genetics of bacteria: transformation, conjugation, transduction; the genetic map of E.coli genetic recombination. Genetics of viruses: Life cycle of virulent bacteriophages, temperate phages and prophage; genetic recombination in phages; mapping genes in phage lambda; The RNA phages, tumor viruses and cancer; viroids.

UNIT II
Genome Organization in Eukaryotes, variation in chromosome number: haploid, polyploid, aneuploid. Variation in chromosome structure: deficiency of deletion, duplication, translocation, inversion and B-chromosome. The fine structure of Eukaryote gene; complementation test, pseudo alleles, split genes, overlapping genes; transposons. Linkage and crossing over; The three point cross; double crossing over, cytological basis of crossing over; sex linkage; recombination in neurospora.
UNIT III

Principles of Mendelian inheritance; Mendel’s experiments-monohybrid, dihybrid, trihybrid and multihybrid crosses. Interaction of genes: incomplete dominance, codominance, epistasis, complementary genes, duplicate genes, polymeric genes, modifying genes; Pleiotrophy, genome imprinting, inheritance and lethal genes. Environment and gene expression: penetrance and expressivity; temperature, light, phenocopies. Quantitative or polygenic inheritance: Inheritance of kernel color in wheat; corolla length in tobacco skin color inheritance in man, transgressive and regressive variation. Multiple alleles; Sex determination; Non-mendelian inheritance and their effects - maternal effect, epigenetic and extra nuclear inheritance.

UNIT IV

UNIT V

Clinical genetics: Genetic Diseases and Inheritance Pattern: Autosomal inheritance – Dominant (Eg: Adult polycystic kidney, Achondroplasia & eurofibromatosis.); Autosomal inheritance – Recessive (Eg: Albinism, Sickle Cell Anemia, Phenyl Ketonuria); X-linked : Recessive (Eg: Duchenne muscular dystrophy – DMD); X-linked : Dominant (eg. Xg blood group); Y-linked inheritance (Holandric – eg. Testes determining factor); Multifactorial inheritance (Eg: Congenital malformations – Cleft lip & palate, Rheumatoid arthritis and Diabetes. Pedigree studies: Symbols used in pedigree analysis. Pedigree analysis of important genetic diseases like Haemophilia, Color blindness, Duchenne Musculat Dystrophy (DMD). Mitochondrila disorders like LHON, DAD, MERRF and MELAS. Diagnosis of disease: cytogenetics; Molecular cytogenetics, molecular genetics ; cancer genetics. Prevention of disease: Prenatal diagnosis; Genetic counseling.

References:
2. Genes VII by Benjamin Lewin
(ELECTIVE - 1)

BIO-PROSPECTING

Course Number: 14BIOGE01A
Number of Credits: 4 (Four)

Preamble:
Bio-prospecting is basically the search for commercially valuable biochemical and genetic resources in plants, animals and microorganisms. These resources may be used in food production, pest control, and the development of new drug and for other related biotechnological applications.

Unit I

UNIT II

Unit III

Unit IV:
Drug discovery and product development: Discovery from traditional medicine. Modern tools in drug discovery. Role of chromatography in drug analysis including HPLC, GC and LC and GC Mass spectrometry, FT IR, -NMR their principles and merits. Product development procedures and policies.

Unit V:
Regulatory legislation and convention in Bioprospecting: rules and regulations in patenting of products and process development and various conventions pertaining to Bioprospecting of products from microorganism, plant and animal products. Bioprospecting policies. Approval and IPR , protection policies of Bioprospecting.
References
1. http://apps.who.int/medicinedocs/en

3. Plants and Empire By Londa L Schiebinger Harvard University Press, 2004

(ELECTIVE - 1)
BIO-INSTRUMENTATION

Course Number: 14BIOGE01B Number of Credits: 4 (Four)

Scope: As a result of the increased demands for physics by students whose primary interests lie in the biological sciences, this course has been written with the hope that it may lead to a fuller appreciation and understanding of the applications of physics to biological problems.

Objectives: The overall objective of this bioinstrumentation is to enrich the student intelligentsia in all the biological observations which are explainable in terms of physical principles as biophysical phenomena.

Goal: To provide a thorough understanding of the analytical techniques and equipment used in biological and medical sciences is an absolute requisite for any student of life sciences. However, a complete insight into these techniques is possible only when the student understands the basic principles of biophysical chemistry.

UNIT I
Physical techniques in separation of biomolecules:
Centrifugation: Preparative and Analytical Centrifuges, Sedimentation analysis RCF, Density Gradient Centrifugation and ultra centrifugation.
Chromatography Techniques: Theory and Application of Paper Chromatography, TLC, Gel Filtration Chromatography, Ion Exchange Chromatography, Affinity Chromatography, GLC, HPLC and HPTLC.

UNIT II
Electrophoretic Techniques: Theory and Application of PAGE, SDS PAGE, Agarose Gel Electrophoresis 2DE, Iso-electric Focusing, isotachophoresis, pulse field gel electrophoresis, Immuno diffusion, Immuno Electrophoresis , ELISA and RIA.
UNIT III

UNIT IV

UNIT V
Tracer and other techniques – Radioactive decay, units of radioactivity, detection – Geiger Muller counter, Scintillation counter, Autoradiography. Applications of radio isotopes in biological and medical sciences.

References:
1. Instrumental methods of chemical analysis – P.K. Sharma
2. Biophysical chemistry – Upadhyay., Upadhyay and Nath
3. A Biologist’s guide to principle and techniques of practical biochemistry – Brigan L. Williams.
6. Experimental methods in Biophysical chemistry- Nicolau, C.
7. Chromatographic methods- Alan Braithwaite, Frank J. Smith
DEVELOPMENTAL BIOLOGY AND PHYSIOLOGY

Course Number: 14BIOBC05

Number of credits: 4 (Four)

Scope: This paper encodes information on the physiology of various eukaryotic systems.

Objective: To enable the students to know the actual path of physiological metabolism of different living system.

Goal: The information gained will help the students to understand the various living system which will help in the future to develop the drugs.

Unit I:
Basic concepts of development:
Production of gametes, cell surface molecules in sperm egg recognition in animals; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation and formation of germ layers in animals; Morphogenesis and organogenesis in animals (Drosophila, Amphibia and Chick). Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; genomic equivalence and the cytoplasmic determinants; imprinting. Embryogenesis in plants (Arabidopsis).

Unit II:
Plant system physiology:
Photosynthesis: Mechanism of photosynthesis; Plant hormones: biosynthesis, storage, breakdown and transport; physiological effects and mechanism of action. Structure, function and mechanisms of action of phytochromes, cryptochromes and phototropins; stomatal movement; photoperiodism. Uptake, transport and translocation of water, ions, solutes and macromolecules from soil, through cells, across membranes, through xylem and phloem; transpiration; mechanisms of loading and unloading of photoassimilates, biosynthesis of terpenes, phenols and nitrogenous compounds and their roles. Responses of plants to biotic (pathogen and insects) and abiotic (water, temperature and salt) stresses; mechanisms of resistance to biotic stress and tolerance to abiotic stress.

Unit III
Animal system physiology:

Digestion and Haematology:
Homeostasis, nutrition, structure and functions of digestive system. Physiology of digestion. Blood corpuscles, haemopoiesis, plasma function, blood volume, haemostasis. Comparative anatomy of heart structure, myogenic heart, ECG- its principle and significance, cardiac cycle, heart as a pump, blood pressure, neural and chemical regulation of all above.
Unit IV
Respiration and Excretion:
Comparison of respiration in different species, anatomical considerations, transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration. Comparative physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, electrolyte balance and acid-base balance.

Unit V:
Nervous system:
Neurons, action potential, gross neuroanatomy of the brain and spinal cord, central and peripheral nervous system. Types, structure and functions of muscles, Physiology of muscle contraction. Sense organs: vision, hearing and tactile response. Endocrine glands, basic mechanism of hormone action, hormone and diseases; reproductive processes, neuroendocrine regulation. Thermoregulation.

Reference:
1. An introduction to embryology- Balinsky
2. Developmental biology- Gilbert
3. Chordate embryology- Verma, Agarwal and Tyagi
4. Plant physiology by Delwin and Withem
5. Plant physiology by Lincoln Taiz, Eduardo Zeiger Publishers, Sinauer

IMMUNOLOGY

Course Number: 14BIOBC06 Number of Credits: 4 (Four)

Scope: Understanding the immune system, antigen antibody reactions, applications of immunological techniques, humoral and cell mediated immunity, hypersensitivity reactions and hybridoma technology.

Objective: To expose the students with various immune systems of human body.

Goal: This course will provide the student insights into the various aspects of Immunology such as classical immunology, clinical immunology, Immunotherapy and diagnostic immunology.

UNIT I
UNIT II
Antigen recognition by the immune system: Antigenicity and Immunogenicity. Superantigens. The epitopes seen by B Cells and T Cells. Antibody Molecule: Structure of antibody molecules; Function of antibody molecules; Antibody-Antigen interactions; Immunization protocol; The various immunotechniques for detection and quantification of antigens/antibodies: RID, ODD, immunoelectrophoresis, rocket immunoelectrophoresis, RIA, ELISA, western blot, floweytometry and immunofluorescence microscopy including in situ localization techniques such as FISH and GISH. Generation of antibody diversity. Antibody engineering: Hybridoma secreting monoclonal antibodies- Recombinant antibody molecules. Catalytic Antibodies.

UNIT III
Major Histocompatibility Complex: MHC molecules and organization of their genes; Structure and function of MHC gene products. Antigen Presentation: Antigen processing; Role of MHC and non-MHC molecules in antigen presentation. Structure of TCR and its interaction With MHC-I and MHC-II peptide Complex - T cell selection. Organization of TCR gene segments and their rearrangement. Activation of T-cells; Activation T_H and T_C cells; Generation of T memory cells; Apoptosis in T cells. B-Cell maturation: Activation of B Cells; Regulation of B-Cell mediated effector functions. Minor histocompatibility complex and its importance.

UNIT IV

UNIT V

References:
6. A. Bul and K.Abbas, 1994, Cellular and Molecular immunology
BIOPROCESS TECHNOLOGY

Course Number: 14BIOBC07

Number of Credits: 4 (Four)

Scope: This paper provides the thorough knowledge about types of microorganisms and their applications and therewith producing various products of industrial and commercial uses.

Objective: In order make the students to understand the applications and uses of microorganisms.

Goal: Students will get the idea of fermentation technology and to produce economically important products and help to find out new methods and applications of microorganisms.

Unit - I

Fundamentals of Bioprocess engineering: Introduction to bioprocess engineering. Media design and usage in fermentation: Types of media, composition of media – carbon sources, nitrogen sources, vitamins and growth factors, mineral, inducers, precursors and inhibitors.

Microbial Growth: Isolation, Preservation and Maintenance of Industrial Microorganisms.

Inoculum development: Development of inocula for yeast, bacterial, mycelial and vegetative fungal processes; aseptic inoculation of the fermentor.

Proteins as enzymes, Immobilized enzymes: methods, Industrial enzymes.

UNIT- II

Sterilization methods: Moist heat; dry heat, flame, filter, gas (ethylene oxide), HTST (high temperature/short time) treatments – continuous sterilizers and pasteurizers - Sterility, asepsis– medium sterilization, batch sterilization, continuous sterilization, filter sterilization.

Production Kinetics: Design for single and multiple reactions - size comparisons of single reactor for single reactions, multiple reactor systems for single reaction, reactions in parallel, in series, and series-parallel reactions of first order. Heterogeneous reactions, kinetics and mechanism of heterogeneous, non catalytic, and catalytic reactions.

UNIT – III

Bioreactors: Introduction to bioreactors; Batch and Fed-batch bioreactors, Continuous bioreactors; solid state and submerged; aerobic and anaerobic fermentation; mixed microbial populations; immobilization of cells and co-immobilization; immobilized cell reactors; Bioreactor operation; Sterilization; Aeration; Sensors; Instrumentation; Analysis of mixed microbial populations, specialized bioreactors (pulsed, fluidized, photobioreactors etc.).
Design of Bioreactors: Construction material; Basic components – Agitator, aerator, Valves and steam traps, seals, stirrer glands; measurement and control of parameters (online and off line sensors) – temperature, flow rate, pressure, pH, DO, gas analysis, control pathways, computer in controlling; Air-lift, stirred tank, tower, fluidized bed, packed bed, pulsed, photo bioreactors.

UNIT - IV

Downstream Processing: Biomass removal: separation of microbial cells and solid matter; Centrifugation; Sedimentation; Flocculation; Microfiltration; Disintegration of microorganism: Sonication; Bead mills; Homogenizers; Chemical lysis; Enzymatic lysis; Membrane based purification: Ultrafiltration ; Reverse osmosis; Dialysis ; Diafiltration ; Adsorption and chromatography: size, charge, shape, hydrophobic interactions, Biological affinity; Process configurations (packed bed, expanded bed, simulated moving beds); Precipitation (Ammonium Sulfate, solvent); Electrophoresis(capillary); Extraction(solvent, aqueous two phase, super critical), Drying – spray driers, drum driers and freeze driers.

UNIT – V

Microbial products in pharmaceutical, food and agriculture industry: Production, harvest, recovery and uses – enzymes, Antibiotics (penicillins, tetracycline, streptomycin), vitamins (B_2, B_{12}), Aminoacids (lysine, glutamic acid, arginine, threonine), Organic solvents (acetone, butanol, ethanol, glycerol); Organic acids (acetic acid, citric acid, lactic acid). Use of microbes in mineral beneficiation and oil recovery.
Production, harvest, recovery and uses – Baker’s yeast, milk products, edible mushrooms. Single Cell Protein (algae/fungi).
Biofertilizer (Rhizobium, Azospirillum, Azolla, Phosphobacteria), Biopesticides (Bacillus thuringiensis, NPV, Pseudomonas)

Reference:

5. Industrial microbiology by L. E. Cassida Jr.
SYSTEMS BIOLOGY

Course Number: 14BIOBC08
Number of Credits: 4 (Four)

Scope:
Biology is fast becoming an interdisciplinary science. There is accumulation of large amount of information in different areas of biology - on genome sequences of many organisms, genetic and biochemical interaction networks, cell interactions during development, and organism response to environmental stimuli, along with molecular understanding of diseases. This has led to the emerging need for a holistic description of the working of biological systems at different scales.

Objectives:
Gain an appreciation for the field of systems biology. Understand and learn the technical details of several current experiments or technologies used in the field of systems biology. Understand some of the larger questions and issues with systems biology and large-scale data collection and analysis.

Goal:
This paper has been designed to give the students comprehensive training in the emerging and exciting upcoming area of Systems Biology, which will help them to get a career in both industry/R&D.

Unit I
Introduction to Systems Biology: Biology in time and space, Models and modeling, purpose and adequateness of models, advantages of computational modeling, Basic notions for computational models, Data Integration and standards.

Unit II

Unit III
Model fitting: Databases for kinetic modeling, measuring promoter activities using GFP reporter genes, parameter estimation, sampling methods, model simplification- quasi steady state equilibrium, modeling of coupled systems, model selection, selection criteria, cycle of experiments and modeling.

Unit IV
Analysis of high-throughput data: High-throughput experiments, Next generation sequencing, image analysis and data quality control, grid finding, spot quantification, linear models, analysis of gene expression data, DNA arrays, ROC curve analysis, clustering algorithms, hierarchical clustering, self organizing map (SOMs).
Unit V

Network structures, Dynamics and Function: Structure of biochemical networks, mathematical graphs, structure of metabolic network, transcription and motif network, negative feedback, dynamics and function of network motifs, modularity, Evolution of modularity and complexity. Flux - balance analysis. evolutionary game theory.

References:

2. Sangtun C. Introduction to Systems Biology. Humana Press, Totowa, New Jersey
(ELECTIVE - 2)
PHARMACEUTICAL BIOTECHNOLOGY

Course Number: 14BIOGE02A Number of Credits: 4 (Four)

Scope: This paper encodes information on drug designing and drug discovery and drug metabolism.

Objective: To enable the students to know the actual path of metabolism of drugs and drug discovery.

Goal: The information gained will help the students to formulate novel drugs.

UNIT I: INTRODUCTION TO PHARMACEUTICALS

UNIT II: SOURCES OF BIOPHARMACEUTICALS

UNIT III: DRUG DEVELOPMENT PROCESSES

UNIT IV: DOSAGE FORMS AND MANUFACTURING PRINCIPLES

UNIT V: REGULATORY ASPECTS
Pre clinical studies. Toxicity studies – reproductive toxicity and teratogenicity, mutagenicity, carcinogenicity and other tests, clinical trials, clinical trial design, trial size design and study population. Regulatory authorities – food and drug administration, investigational new drug application, new drug application, European regulations, National regulatory authorities,
European medicines agency and the new EU drug approval system, centralized procedure, mutual recognition, drug registration in Japan, World harmonization of drug approvals.

Reference:

 Publishing & Co, New Delhi.

(ELECTIVE - 2)
ENVIRONMENTAL BIOTECHNOLOGY

Course Number: 14BIOGE02B Number of Credits: 4 (Four)

Scope: To understand the energy sources, environmental pollution and remediation using biotechnology and its control.

Objective: Students will get an idea about the hazards to our environment, solutions to protect and for sustainable development.

Goal: This course is important in the era of industrialization leading to environmental hazards and hence will help students to take up a career in tackling industrial pollution and also who is willing to take up the research in areas like development of biological systems for remediation of contaminated environments (land, air, water), and for environment-friendly processes such as green manufacturing technologies and sustainable development.

UNIT - I

Bio-Fuels and Bio-Energy: Biofuels and sources, Advantages, Genetic improvement through metabolic engineering; Commercial success of Biofuels, Future energy needs and direction of research.

UNIT – II

Environmental pollution: Types of pollution, methods for the measurement of pollution, air pollution and its control, Global environmental problems: ozone depletion, greenhouse effect and acid rain, principles of conservation and application of biotechnology, remote sensing and GIS (Principal and applications in ecological mapping and environmental hazard predictions), ecological modeling, bioindicators and biosensors for detection of pollution. Solid waste: Sources and management (composting, vermiculture and methane production).
UNIT – III

Water Pollution and control: Need for water management, measurement and sources, water pollution. Waste water treatment: waste water collection, physico-chemical properties of waste water, physical, chemical and biological treatment processes. activated sludge, oxidation ditches, trickling filter, rotating discs, rotating drums, oxidation ponds. Anaerobic digestion, anaerobic filters, up flow anaerobic sludge blanket reactors. Treatment schemes for waste waters of dairy, distillery, tannery, sugar, antibiotic industries.

UNIT – IV

Xenobiotics: Ecological considerations, degradative plasmids; hydrocarbons, substituted hydrocarbons, oil pollution, surfactants, pesticides. biopesticides; bioremediation and Phytoremediation.

UNIT – V

References

5. Introduction to Biodeterioration by D. Allsopp and k.J. Seal, ELBS/Edward Arnold.
7. Biotechnology for Wastewater Treatment. P Nicholas Cheremisinoff. Prentice Hall Of India. 2001
8. Biotechnological Methods of Pollution Control. SA Abbasi and E Ramaswami. Universities Press.
ANIMAL BIOTECHNOLOGY

Course Number: 14BIOBC09 Number of Credits: 4 (Four)

Scope: The study of animal cells has helped us gain an insight not only in the structure and function of cells and tissues but also in different physiological, biochemical and immunological processes. Biotechnologists explore and develop new technologies using molecular biology, embryo manipulation and cell and tissue culture. Research on gene regulation and early embryo development has resulted in novel techniques to manipulate and explore the genomes of domestic animals for ways to increase healthier food production as well as to develop biomedical applications.

Objective: The major objective is to provide a world-class training experience for these students in an interdisciplinary research program connecting animal genomics with animal reproduction and biotechnology.

Goal: This paper will help students interested in careers as laboratory, research or animal care technicians in the fields of veterinary and human health or biotechnology.

UNIT I

UNIT II

UNIT III
Cytotoxicity; Measurement of Cytotoxicity: Viability; Survival and Variable Parameters; Cell Proliferation Assays; Metabolic Cytotoxicity Assays; Microtitration Assays; Microtitration and Clonogenic Survival; Drug Interaction; Mutagenesis Assay by Sister Chromatid Exchange; Applications of Cytotoxicity Assays. Apoptosis and its determination; Necrosis; Difference between apoptosis and necrosis. Application of animal cell culture; Vaccine production; Tissue engineering; Engineered cell culture as source of valuable products and therapeutic protein production.
UNIT IV

Transgenic Mouse; Transgenic Fish; Transgenic Goat; Transgenic Pig; Transgenic Cattle; Transgenic Sheep; Transgenic Rabbit; Transgenic Birds; Transgenic Mosquitoes. Production Methodology of Transgenic animals - Embryonic Stem Cell method, Microinjection method, Retroviral vector method. Silkworm Culture for therapeutic protein production.

UNIT V

In Vitro Fertilization and Embryo Transfer: Composition of IVF media, Steps involved in IVF, Fertilization by means of micro insemination, PZD, ICSI, SUZI, MESA. Stem cell culture, embryonic stem cell and their applications. Ethical issues in animal biotechnology.

References:

RECOMBINANT DNA TECHNOLOGY

Course Number : 14BIOBC10

Number of Credits: 4 (Four)

Scope: This paper provides the student a thorough knowledge in principles and methods in genetic engineering, vectors in gene cloning, transformation in higher organisms, Human Genome Project and gene therapy. Techniques employed are carved as self study.

Objective: The main objective of the paper is to expose students to application of rDNA technology to various fields of biotechnology.(medicine and research areas).

Goal: This paper will help the student to get a grasp on the latest advances in recombinant DNA technology, which is a powerful tool in modern Biotechnology

UNIT- I

Principles and methods in genetic engineering: Isolation and purification of Nucleic Acids - Agarose Gel Electrophoresis - Southern, Northern and South-Western blotting techniques - Principles and techniques of nucleic acid hybridization and cot curves - Polymerase Chain Reaction: Variations and advancements.

Enzymes in Molecular Biology: Nucleases, Restriction endonucleases, DNA Ligases, topoisomerases, gyrase, methylases, other modifying enzymes – Bacterial Transformation: Principles and methods.

UNIT-II

UNIT-III

DNA sequencing methods, strategies for genome sequencing; methods for analysis of gene expression at RNA and protein level, large scale expression analysis, such as micro array based techniques Expression strategies for heterologous genes.: vector engineering and codon optimization, host engineering, in vitro transcription and translation, expression in bacteria, yeast, insect, insect cells, mammalian cells, phage display.

UNIT-IV

A. Mapping of genome: Genetic and physical maps, physical mapping and map based cloning, choice of mapping population, simple sequence repeat loci, southern and fluorescence in situ hybridization for genome analysis, chromosome micro deletion and micro cloning, molecular markers in genome analysis; RFLP, RAPD and AFLP analysis,
molecular markers linked to disease resistance genes, application of RFLP in forensic, disease prognosis, genetic counseling.

B. Genome sequencing: Genomic libraries, YAC, BAC libraries, strategies for genome, packaging, transaction and recovery of clones, application of sequence information for defective gene identification.

UNIT-V

References:

3. Molecular Biotechnology: Principles and Applications of Recombinant DNA.
PLANT BIOTECHNOLOGY

Course Number : 14BIOBC11 Number of Credits: 4 (Four)

Scope: Students will learn about genome organization in plants, basic techniques in tissue culture and its applications, Genetic transformation in plants, metabolic engineering, production of pharmaceuticals and industrial products.

Objective: To equip students to fully aware of the applications of plant biotechnology.

Goal: This paper has been designed to give the students comprehensive training in the plant biotechnology and its application for increasing agricultural production, environment improvement, human, nutrition and health. Help students to get a career in both industry/R&D.

UNIT – I

Genome organization in Plants: Nucleus, Chloroplast and Mitochondria, Molecular Marker-aided Breeding: RFLP maps, linkage analysis, RAPD markers, STS, Microsatellites, SCAR (Sequence Characterized Amplified Regions), SSCP (Single Strand Conformational Polymorphism), AFLP, QTL, map based cloning, molecular marker assisted selection.

UNIT – II

Plant Cell and Tissue Culture: Tissue culture media (composition and preparation), Callus and suspension culture; Somaclonal variation; Micropropagation; Organogenesis; Somatic embryogenesis; transfer and establishment of whole plants in soil; green house technology. Embryo culture and embryo rescue. Artificial seeds. Protoplast fusion and somatic hybridization; cybrids; anther, pollen and ovary culture for production of haploid plants. Cryopreservation and DNA banking for germplasm conservation.

UNIT – III

UNIT – IV

UNIT – V

Metabolic Engineering and Biopharmaceuticals: Plant secondary metabolites, control mechanisms and manipulation of phenylproponoid pathway, shikimate pathway; alkaloids, industrial enzymes, biodegradable plastics, polyhydroxybutyrate, therapeutic proteins, lysosomal enzymes, antibodies, edible vaccines, purification strategies, oleosin partitioning technology, Plant host-insect interactions- *nif* and *nod* genes.

References:

STEM CELL BIOLOGY AND TISSUE ENGINEERING

Course Number: 14BIOBC12
Number of credits: 4 (Four)

Scope: The course is to offer the student state of the art education of stem cells and how the pluripotent and multipotent cells can be used to treat the neurodegenerative disorders, cardiovascular disorders and diabetes. This course will also review the current scenario of tissue engineering applications in bioartificial organs development and transplantation.

Objectives: The course will provide students with knowledge of wide ranging topics related to stem cells, regenerative biology and tissue engineering.
Goal: The course goal is to introduce students to updated fundamental knowledge, technological advancements and potential applications of stem cells and tissue engineering.

Unit-I
Introduction to Stem Cells – Definition, Classification, characteristics, Differentiation and dedifferentiation, Stem cell niche, stem cell Vs cells; Basic culture procedures – Isolation, culture methods, identification, stem cell markers, feeder layer; Instrumentations in stem cell biology.

Unit-II
Different kinds of stem cells – Adult Stem cells, Embryonic stem cells, Embryonic Germ cells, Hematopoietic stem cell, Neural stem cells, muscle and cardiac stem cells, Umbilical cord blood stem cells, cancer stem cells, Mesenchymal stem cells, Induced pluripotent Stem cells.

Unit-III
Therapeutic applications – stem cells and neurodegenerative disorders, stem cells and diabetes, stem cells and cardiac disorders, regeneration of epidermis, Success stories of stem cell therapy. Stem cell banking around the world. Current status of Stem cell research. World federal fundings for stem cell research; Public view and ethical approaches on stem cells.

Unit – IV

Unit – V
Bioartificial organs – source of cells, choosing the right scaffold material, mode of transplantation. Epidermal Tissue engineering, Bladder reconstruction, Skin equivalents, Liver reconstruction, Bone regeneration through tissue engineering, Tissue Engineering and future perspectives.

Self study: Confocal Microscopy, Fluorescence microscopy, FACS.

Reference:
3. Stem cell now – Christopher Thomas Scott.
Course Number: 14BIOGE03A Number of credits: 4 (Four)

Scope: This paper has been designed to educate students on various genetic and molecular changes behind the transformation of normal cells into malignant cancer cells. These modifications include unregulated cell proliferation, evasion of cell death, and metastasis. This paper will describe factors that contribute to cancer development and discuss cancer diagnosis and currently available therapeutic treatments.

Objective: On the finale of the course, the students will be able to show core knowledge of the molecular and genetic basis of cancer.

Goal: The paper helps to generate novel mechanistic insight into the processes of tumor development and translate these results for the diagnostic and therapeutic strategies.

Unit I: Introduction to Cancer
Cancer: Definition; Cancer incidence and mortality; Origin of neoplastic cells; Cancer as cellular disease; Types of Cancer: Benign Tumors Vs. Malignant Tumors, Common Symptoms, Causes of Cancer: Chemical Carcinogenesis; Irradiation Carcinogenesis; Oxygen Free Radicals, Aging and Cancer; Genetic Susceptibility and Cancer; Multiple Mutations in Cancer; DNA repair defects and their relationship to cancer; Viral Carcinogenesis.

Unit II: Cell Cycle Regulation and Cell Signalling in Cancer
Growth Characteristics of Malignant Cells; Cell Cycle Regulation; Evasion of Apoptosis (Programmed Cell Death); Growth Factors; Signal Transduction Mechanisms - G protein-linked receptors, The phosphoinositide 3-kinase pathway, mTOR, Tyrosine kinase pathways, JAK-STAT pathway, Estrogen receptor pathway, Hypoxia-inducible factor, Tumor necrosis factor receptor signaling, Tumor growth factor-β signal transduction, Heat shock protein-mediated events; Angiogenesis; Invasion and Metastasis; Biology of Tumor Metastasis.

Unit III: Molecular Genetics of Cancer
Molecular Basis of Cancer: DNA Methylation and Cancer; Loss of Heterozygosity; Telomeres and Telomerase; Molecular Genetic Alterations in Cancer Cells - Translocations and Inversions, Chromosomal Deletions, Gene Amplification, Point Mutations, Aneuploidy, Disomy, Trinucleotide Expansion, Microsatellite Instability, Mismatch DNA Repair Defects, Gene Derepression in Cancer Cells, Oncogenes, Tumor Suppressor Genes: pRb and p53, DNA Tumor Viruses - V40 and Polyoma, Papilloma Viruses E6 and E7, Adenoviruses E1A and E1B, Hepatitis B Virus and Herpes Viruses.

Unit IV: Tumor Immunology
Mechanisms of the Immune Response to Cancer: Antigen Presenting Cells; Antigen Processing; T Lymphocytes and T Cell Activation; The Immunological Synapse; B Lymphocytes and B Cell Activation; Natural Killer Cells; Cell-Mediated Cytotoxicity; Role of Gene Rearrangement in the
Tumor Response; Heat Shock Proteins as Regulators of the Immune Response; Inflammation and Cancer; Immunotherapy

Unit V: Cancer Diagnosis and Treatment

Tumor Markers; Gene Expression Microarrays; Proteomic Methods; Circulating Epithelial Cells; Circulating Endothelial Cells and Endothelial Progenitor Cells; Molecular Imaging; Haplotype Mapping.

Molecular Mechanisms of Aging and cancer: Somatic Mutation; Telomere Loss; Mitochondrial Damage; Formation of Oxygen-Free Radicals; Cell Senescence; DNA Repair and Genome Stability; Caloric Restriction. Diet and Cancer Prevention; Chemoprevention; Antiproliferative Agents; Antioxidants; Protease Inhibitors; Histone Deacetylase Inhibitors; Statins; Multiagent chemoprevention

References:

BIOSAFETY, BIOETHICS AND IPR

Course Number: 14BIOGE03B Number of credits: 4 (Four)

Scope: This course has been designed to provide the student insights into these invaluable areas of biotechnology, which play a crucial role in determining its future use and applications.

Objective: Students get an idea about the advantages and disadvantages of biotechnological applications, ethical implications, and intellectual property rights.

Goal: To study the diversity of plants and animal life in a particular habitat, ethical issues and potential of biotechnology for the benefit of man kind.

UNIT I

UNIT II

UNIT III
Ethical implications of cloning: Reproductive cloning , therapeutic cloning ; Ethical, legal and socio-economic aspects of gene therapy, germ line, somatic, embryonic and adult stem cell research- GM crops and GMO’s – biotechnology and biopiracy – ELSI of human genome project.

UNIT IV

UNIT V
Introduction to intellectual property and intellectual property rights – types: patents, copyright, trade marks, design rights, geographical indications – importance of IPR – patentable and non patentables – patenting life – legal protection of biotechnological inventions – world intellectual property rights organization (WIPO)

References:
2. Glimpses of Biodiversity – B.Bllosetti
8. http://lifesciences.cornell.edu/vision/accelerating_focus05.php
10. http://assets.cambridge.org/0521792495/sample/0521792495WS.PDF
PRACTICALS - I : BASIC BIOTECHNOLOGY

Subject code: 14BIOBCP1
Number of Credits: 4 (Four)

Students are advised to collect the practical protocols well in advance from the respective faculty

Enzyme Biotechnology Laboratory -
1. Determination of protein by Lowry method.
2. Determination of specific activity of the enzyme.
3. Determining the type of inhibitors for an enzyme.
4. Visualization of enzyme activity in Native PAGE.

Animal cell culture and Molecular Genetics Laboratory – Dr. V. Vijayapadma
5. Separation of peripheral mononuclear cells from the blood.
6. Culturing Lymphocytes from Peripheral blood samples.
8. Assessing genotoxicity by COMET assay.

Molecular Toxicology Laboratory - Dr. P. Ekambaram
10. Mitotic index.
11. Micrometry.
12. Mounting of polytene chromosome from Chironomous larvae.

Plant Genetic Engineering Laboratory – Dr. R. Sathiskumar
13. Introduction to plant tissue culture-induction of callus and suspension cultures.
14. Isolation and purify the protoplasts and check its viability.
15. Induction of somatic embryogenesis and analysis of different stages.
16. Extract the genomic DNA from plants by CTAB method and resolve in the Agarose Gel.

Plant Biotechnology Laboratory – Dr. S. Girija
17. Isolation of genomic DNA from medicinal plant by SDS method (Peterson et al., 1993).
19. Isolation of Ri plasmid from Agrobacterium rhizogenes.
20. Quantification of flavanoid content in fruit sample.

Molecular Microbiology Laboratory – Dr. S.R. Prabagaran
21. Isolation of Microorganisms from various environments (food, effluent, soil/sea, Glaciers).
22. Cultivation of Bacteria, Actinomycetes, Fungi.
23. Staining techniques and microscopy.
PRACTICAL – II: ADVANCED BIOTECHNOLOGY

Subject code: 14BIOBCP2 Number of Credits: 4 (Four)

Enzyme Biotechnology Laboratory –

1. Identification of BChE gene using PCR.
2. Construction of BChE cDNA by reverse transcriptase.
3. Purification of BChE by DEAE cellulose column.
4. Determination of molecular weight of the protein by SDS PAGE.

Animal cell culture and Molecular Genetics Laboratory – Dr. V. Vijayapadma

5. Determination of antigen concentration by Radial immunodiffusion.
6. Determining antigen specificity by Double immunodiffusion.
7. Determination of antigen concentration by Rocket immunoelectrophoresis.

Molecular Toxicology Laboratory – Dr. P. Ekambaram

9. Isolation of DNA from animal cells.
10. Estimation of iron in water samples.
11. Estimation of chromium in water samples.
12. Drug administration methods.

Plant Genetic Engineering Laboratory – Dr. R. Sathishkumar

15. Identification of WT/Transgenic plant by PCR.
16. Perform the restriction digestion for the given DNA sequence and comment.

Plant Biotechnology Laboratory – Dr. S. Girija

17. Micropropagation, callus induction and regeneration using different explants of plants.
18. *Agrobacterium rhizogenes* for hairy root culture.
19. Qualitative analysis of transgenic using phenolics content.
20. Estimation of Plumbagin (anticancer compound) in callus culture.

Molecular Microbiology Laboratory – Dr. S. R. Prabagaran

21. Mini prep of plasmid DNA.
22. Elution of DNA from gel.
24. Transformation and Electroporation.
PRACTICAL – III: APPLIED BIOTECHNOLOGY

Subject code: 14BIOBCP3 Number of Credits: 4 (Four)

Enzyme Biotechnology Laboratory –

1. Prediction and validation of protein structure (AChE using modellar).
2. Prediction of binding mode of receptor ligand (AChE/Tacrine/Gallanthamine).
3. Determination of interactive residues on ligand receptor complexes (chimera/SPV(PyMol)).
4. Sequence analysis of nucleic acid (BLAST, MSV), motif analysis and domain identification for protein.

Animal cell culture and Molecular Genetics Laboratory – Dr. V. Vijayapadma

5. Checking the cell viability by MTT assay.
7. Determination of cytotoxicity by measuring lactate dehydrogenase activity.
8. Determination of Apoptosis through DNA fragmentation analysis.

Molecular Toxicology Laboratory - Dr. P. Ekambaram

9. Preparation of primary cells from chick embryo.
11. Trypsinization of monolayer and subculturing.
12. Sex chromatin identification from Buccal smear.

Plant Genetic Engineering Laboratory – Dr. R. Sathishkumar

13. Screening of rice germplasm for aroma using PCR-RFLP analysis.
14. Transient gene expression in tobacco by infiltration of Agrobacterium culture.
15. Determination of protein expression (transgene) by western blotting.
16. Pair wise and multiple sequence alignment of nucleic acids and proteins.

Plant Biotechnology Laboratory - Dr. S. Girija

17. Determination of Free radical scavenging activity by DPPH assay.
18. Determination of secondary metabolite (Eugenol) using TLC and confirmation by HPLC.
20. ISSR marker analysis for medicinal plant identification.

Molecular Microbiology Laboratory - Dr. S.R. Prabagaran

22. Estimation of mol% G+C content of DNA (Tm).
23. Phylogenetic tree construction using PHYLIP.
24. Detection of FAMEs through Gas chromatography.
SUPPORTIVE – I

TOOLS IN BIOTECHNOLOGY

Subject Code: 14BIOGS01

Number of Credits: 2 (Two)

UNIT-I:
Gene and Genomes
Prokaryotic and Eukaryotic Genomes - Structure of Gene - DNA as the genetic material; Extra chromosomal DNA: Plasmid, mitochondrial DNA and chloroplast DNA.

UNIT-II:
Cloning Vectors
Vectors: Plasmid, phagemid, cosmid, Artificial Chromosomes (BAC) - Transformation techniques: Electroporation, CaCl2 method.

UNIT-III:
Tools for Gene Manipulation
Enzymes: Gel Electrophoresis: AGE and PAGE; Restriction Enzymes, Ligases, Modifying Enzymes - Markers for Selection: selectable and scorable - Examples.

UNIT-IV:
Selection Strategy and Screening for Transformants
Selection of rDNA Clones: Blue-White Selection, Colony Hybridization, PCR, Molecular analysis: Western blotting, Southern Blotting and Northern Blotting.

UNIT-V:
Application of Cloning
Over expression of Biomolecules (Insulin) - Gene therapy – GMO – DNA Finger printing Application and Biosafety issues

References
5. Molecular Cloning. Maniatis, Fritsch and Sambrook.a
SUPPORTIVE - II

MEDICAL BIOTECHNOLOGY

Subject Code: 14BIOGS02 Number of Credits: 2 (Two)

Unit I
Introduction to Biotechnology and medicine:
Medicine field of 21st century, Role of Biotechnology in medicine, rDNA technology, Vaccines, MoABS.

Unit II
Molecular Diagnostics:
Importance of diagnosis-PCR based diagnosis for infections diseases (HIV, Hepatitis, Typhoid, Filariasis), Cancer and genetic disorders

Unit III
Cell and gene mediated therapy:
Introduction to stem cells-History of stem cell research-Classification of stem cells –Stem cell banking-applications of stem cells-importance of stem cells-regulations of stem cell research-Gene therapy; outline and methods.

Unit IV
Assisted reproductive techniques:
Introduction-causes of infertility-methods; IVF-Intra uterine insemination-cryopreservation of germ cells.

Unit V
Tissue Engineering

Reference:
SUPPORTIVE – III
PLANT MOLECULAR FARMING

Subject Code: 14BIOGS03
Number of Credits: 2 (Two)

Unit I
Production technologies
Efficient and reliable production of pharmaceuticals in alfalfa; Foreign protein expression using plant cell suspension and cultures; Novel sprouting technology for recombinant protein production monocot expression systems for molecular farming the field evaluation of transgenic crops engineered to produce recombinant proteins; plant viral vectors: history and new developments

Unit II
Pharmaceuticals
Production of pharmaceutical proteins in plants and plant cell suspension cultures; chloroplast derived antibodies, biopharmaceuticals and edible vaccines; plant-derived vaccines: progress and constraints; production of secretory IgA in transgenic plants

Unit III
Field trial
Production of spider silk proteins in transgenic tobacco and potato; Gene farming in pea under field conditions

Unit-IV
Production
Host plants, systems ad expression strategies for molecular farming; Downstream processing of plant-derived recombinant therapeutic proteins; Glycosylation of plant-made pharmaceuticals

Unit-V
Product issues
Biosafety aspects of molecular farming in plants; A top-down view of molecular farming from the pharmaceutical industry: requirements and expectations; The role of science and discourse in the application of the precautionary approach

Reference: