









Volume:14, Issue:8(2), August, 2025
Scopus Review ID: A2B96D3ACF3FEA2A
Article Received: Reviewed: Accepted
Publisher: Sucharitha Publication, India
Online Copy of Article Publication Available: www.ijmer.in

## PRE-AOPEN SET IN A TOPOLOGICAL SPACE

## Ashok Raj Mahali

Department of Mathematics, Sripat Singh College, Jiaganj, West Bengal, India

### **Abstract:**

In this paper I studied some topological properties of pre- $\Delta$ open sets using the concept of pre-open set and  $\Delta$ open set in a topological space. The term pre- $\Delta$ limit point,pre- $\Delta$ derived set,pre- $\Delta$ closure,pre- $\Delta$ interior point are discussed.

# 2020 Mathematics Subject Classification: 54A05

**Keywords:** pre- $\Delta$ limit point, pre- $\Delta$ derived set,pre- $\Delta$ closure,pre- $\Delta$ interior point.

#### 1 Introduction

Mashhour et al. first gives an idea on pre-open sets[3].  $\Delta$ open sets are defined and studied by veera[6] and semi- $\Delta$ open set by T.M Noor and AHMAD Mustafa JABER[5]. In this paper I Introduce the notion of pre- $\Delta$ limit point, pre- $\Delta$ derived set,pre- $\Delta$ closure and pre- $\Delta$ interior of a set by using the concept of pre-open set and  $\Delta$ open set and studied their topological properties.

#### 2 Preliminaries

The pair  $(Z, \tau)$  denote the topological space throughout this paper on which no separation axiom are assumed unless explicitly mentioned. A subset M of Z is said to be pre-open[3] if  $M \subseteq int(cl(M))$ . The complement of a pre-open set is a pre-closed set. The subset M is pre-open if and only if there exists an open set H in Z such that  $M \subseteq H \subseteq cl(M)[1]$ . A subset M of a space Z is called  $\Delta$ open[6] if  $M = (S - T) \cup (T - S)$  where S and T are open subsets of Z and semi- $\Delta$ open[5] if  $M = (S - T) \cup (T - S)$  where S and T are semi-open[2] subsets of Z. The complement of a  $\Delta$ open set is called  $\Delta$ closed. The intersection of all  $\Delta$ closed sets containing the set M is called the  $\Delta$ closure of M. In this paper I take the symbols int $\Delta$ , cl $\Delta$ ,  $\tau\Delta$  to denote the  $\Delta$ interior,  $\Delta$ closure and the family of all  $\Delta$ open sets respectively w.r. to the topology  $\tau$ . The set of all  $\Delta$ limit points of M will be denoted by  $\Delta$ (M).

#### 3 Main results

**Definition 3.1** A subset M of a space  $(Z, \tau)$  will be called pre- $\Delta$ open if  $M = (S - T) \cup (T - S)$ , where S and T are pre-open sets in Z.

The family of all pre- $\Delta$ open sets in Z will be denoted by  $\tau\Delta p$ . The complement of a pre- $\Delta$ open set will be called pre- $\Delta$ closed set and pre- $\Delta$ closure of M will be denoted by  $cl\Delta p(M)$  which is the intersection of all pre- $\Delta$ closed sets containing M.

From the following example it is clear that every  $\Delta$ open set and also every pre-open set is pre- $\Delta$ open but in general its converse applications are not true.

**Example 3.2** Let 
$$Z = \{r, s, t\}$$
, then  $\tau = \{Z, \phi, \{r\}\}$  be a topology on  $Z$ .

Closed subsets of Z are Z, 
$$\phi$$
,  $\{s, t\}$ . Then  $cl\{r\} = Z$ ,  $cl\{s\} = \{s, t\}$ ,  $cl\{t\} = \{s, t\}$ ,  $cl\{r, s\} = Z$ ,  $cl\{r, t\} = Z$ ,  $cl\{s, t\} = \{s, t\}$ .

Therefore, 
$$int(cl\{r\}) = int(cl\{r,s\}) = int(cl\{r,t\}) = Z$$
 and  $int(cl\{s\}) = int(cl\{t\}) = int(cl\{s,t\}) = \phi$ .

Hence the family of pre-open sets  $\tau p = \{X, \phi, \{r\}, \{r, s\}, \{r, t\}\}\}$ . Let  $S = \{r, t\}$  and  $T = \{r\}$  then  $(S - T) \cup (T - S) = \{t\} \cap \phi = \{t\}$ .









INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY EDUCATIONAL RESEARCH ISSN:2277-7881(Print); IMPACT FACTOR: 9.014(2025); IC VALUE: 5.16; ISI VALUE: 2.286 PEER REVIEWED AND REFEREED INTERNATIONAL JOURNAL (Fulfilled Suggests Parametres of UGC by IJMER)

Volume:14, Issue:8(2), August, 2025
Scopus Review ID: A2B96D3ACF3FEA2A
Article Received: Reviewed: Accepted
Publisher: Sucharitha Publication, India
Online Copy of Article Publication Available: www.ijmer.in

Thus the set  $\{t\}$  is pre- $\Delta$ open but it is neither  $\Delta$ open nor pre-open.

**Definition 3.3** *Let* M *be a subset of a topological space* Z. *A point*  $m \in Z$  *will be called pre-\Delta limit point of* M *if for all*  $R \in \tau \Delta p$ ,  $m \in R$  *implies that*  $R \cap (M \setminus \{m\}) \neq \phi$ .

The set of all pre- $\Delta$ limit points of M will be called pre- $\Delta$ derived set of M and it is to be denoted by  $D\Delta p(M)$ .

**Example 3.4** Let  $Z = \{r, s, t\}$  with the topology  $\tau = \{Z, \phi, \{s\}\}$ , then  $\tau p = \{Z, \phi, \{s\}, \{r, s\}, \{s, t\}\}$  and  $\tau \Delta p = \{X, \phi, \{r\}, \{s\}, \{t\}, \{r, s\}, \{r, t\}\}$ . Here  $\tau \Delta = \{Z, \phi, \{s\}, \{r, t\}\}$ . Take  $M = \{s, t\}$ . For  $r \in Z$ ,  $\Delta$  open sets containing the element r are Z and  $\{r, t\}$ . Now  $M \setminus \{r\} = \{s, t\}$ . Since  $Z \cap \{s, t\} = \{s, t\} \neq \phi$  and  $\{r, t\} \cap \{s, t\} = \{t\} \neq \phi$ ,  $r \in D\Delta(M)$ . Similarly we can easily check that  $s, t \notin D\Delta(M)$  and hence  $D\Delta(M) = \{r\}$ . Considering  $pre - \Delta open$  sets we get  $D\Delta p(M) = \phi$ .

**Definition 3.5** *Let* M *be a subset of a topological space* Z. A *point*  $m \in Z$  *will be called pre-\Delta interior point of* M *if there exists a pre-\Delta open set* R *such that*  $m \in R \subseteq M$ .

The set of all pre- $\Delta$ interior points of M will be called the pre- $\Delta$ interior of M and it is to be denoted by int $\Delta p(M)$ .

**Example 3.6** Let  $Z = \{r, s, t\}$  with the topology  $\tau = \{Z, \phi, \{r, s\}\}$ . If  $M = \{s, t\}$  then  $int\Delta(M) = \phi$ ,  $int\Delta p(M) = \{s, t\}$ .

**Proposition 3.7** *Let M and N be two arbitrary subsets of Z. Then the following statements are true:* 

- 1.  $int\Delta p(M)$  is the union of all pre- $\Delta$ open subsets of M.
- 2. M is pre- $\Delta$ open if and only if  $M = int\Delta p(M)$ .
- 3.  $M \subseteq N \Rightarrow int\Delta p(M) \subseteq int\Delta p(N)$ .
- 4.  $int\Delta p(M) \cup int\Delta p(N) \subseteq int\Delta p(M \cup N)$ .
- 5.  $int\Delta p(M \cap N) \subseteq int\Delta p(M) \cap int\Delta p(N)$ .

*Proof.* 1. Suppose that the collection of all pre- $\Delta$ open subsets of M is  $\{R_k | k \in \Lambda\}$ . If  $m \in int\Delta p(M)$ , then there exists  $i \in \Lambda$  such that  $m \in R_i \subseteq M$ . Thus  $m \in \bigcup_{k \in \Lambda} R_k$  and so  $int\Delta p(M) \subseteq \bigcup_{k \in \Lambda} R_k$ . Now, if  $n \in \bigcup_{k \in \Lambda} R_k$ , then  $n \in R_i \subseteq M$  for some  $i \in \Lambda$ . Hence  $n \in int\Delta p(M)$  and so  $\bigcup_{k \in \Lambda} R_k \subseteq int\Delta p(M)$ . Hence  $int\Delta p(M) = \bigcup_{k \in \Lambda} R_k$ 

- 2. Straightforward.
- 3. Suppose that  $m \in int\Delta p(M)$ , then there exists a pre- $\Delta$ open set R such that  $m \in R \subseteq M$ . Now as  $M \subseteq N$ ,  $m \in R \subseteq M \subseteq N$  so that  $m \in int\Delta p(N)$ .
- 4. Since  $M \subseteq M \cup N$  and  $N \subseteq M \cup N$ ,  $int\Delta p(M) \subseteq int\Delta p(M \cup N)$  and  $int\Delta p(N) \subseteq int\Delta p(M \cup N)$ . Hence  $int\Delta p(M) \cup int\Delta p(N) \subseteq int\Delta p(M \cup N)$ .
- 5. Since  $M \cap N \subseteq M$  and  $M \cap N \subseteq N$ ,  $int\Delta p(M \cap N) \subseteq int\Delta p(M)$  and  $int\Delta p(M \cap N) \subseteq int\Delta p(N)$ . Hence  $int\Delta p(M \cap N) \subseteq int\Delta p(M) \cap int\Delta p(N)$ .

**Proposition 3.8** *Let M and N be two arbitrary subsets of Z. Then the following statements are true:* 

1.  $D\Delta p(M) \subseteq D\Delta(M)$ .









INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY EDUCATIONAL RESEARCH ISSN:2277-7881(Print); IMPACT FACTOR: 9.014(2025); IC VALUE: 5.16; ISI VALUE: 2.286 PEER REVIEWED AND REFEREED INTERNATIONAL JOURNAL (Fulfilled Suggests Parametres of UGC by IJMER)

Volume:14, Issue:8(2), August, 2025
Scopus Review ID: A2B96D3ACF3FEA2A
Article Received: Reviewed: Accepted
Publisher: Sucharitha Publication, India
Online Copy of Article Publication Available: www.ijmer.in

- 2. If  $M \subseteq N$  then  $D\Delta p(M) \subseteq D\Delta p(N)$ .
- 3.  $D\Delta p(M) \cup D\Delta p(N) \subseteq D\Delta p(M \cup N)$ .
- 4.  $D\Delta p(M \cap N) \subseteq D\Delta p(M) \cap D\Delta p(N)$ .

*Proof.* 1. Let  $m \in D\Delta p(M) \Rightarrow \forall R \in \tau \Delta p, m \in R$  we have  $\{R \cap M\} \setminus \{m\} \neq \phi \Rightarrow m \in D\Delta(M)$  since every  $\Delta$  open set is pre- $\Delta$  open.

- 2. Suppose that  $m \in D\Delta p(M)$  and let  $R \in \tau \Delta p$  with  $m \in R$ . Then  $R \cap (M) \setminus \{m\} \neq \phi$ . Now as  $M \subseteq N$ ,  $R \cap (N \setminus \{m\}) \neq \phi$  so that  $m \in D\Delta p(N)$ .
- 3. Since  $M \subseteq M \cup N$  and  $N \subseteq M \cup N$ ,  $D\Delta p(M) \subseteq D\Delta p(M \cup N)$  and  $D\Delta p(N) \subseteq D\Delta p(M \cup N)$  and hence  $D\Delta p(M) \cup D\Delta p(N) \subseteq D\Delta p(M \cup N)$ .
- 4. Since  $M \cap N \subseteq M$  and  $M \cap N \subseteq N$ ,  $D\Delta p(M \cap N) \subseteq D\Delta p(M)$  and  $D\Delta p(M \cap N) \subseteq D\Delta p(N)$  and hence  $D\Delta p(M \cap N) \subseteq D\Delta p(M) \cap D\Delta p(N)$ .

**Theorem 3.9** Let M be a subset of Z and  $m \in Z$ . Then the following two statements are equivalent:

- (i)  $m \in R \Rightarrow M \cap R \neq \phi \ \forall R \in \tau \Delta p$ .
- (ii)  $m \in cl\Delta p(M)$ .

*Proof.* (i)  $\Rightarrow$  (ii)

If  $m \notin cl\Delta p(M)$ , then there exists a pre- $\Delta$ closed set F such that  $M \subseteq F$  and  $m \notin F$ . Hence  $Z \setminus F$  is pre- $\Delta$ open set containing m and  $M \cap (Z \setminus F) \subseteq M \cap (Z \setminus M) = \phi$ . This is a contradiction and hence (ii) is valid.

 $(ii) \Rightarrow (i)$ .

Let  $m \in cl\Delta p(M)$ . Then  $m \in M \cup D\Delta p(M) \Rightarrow$  either  $m \in M$  or  $m \in D\Delta p(M)$ . If  $m \in M \Rightarrow M \cap R \neq \phi$  since  $m \in R$ .

If  $m \in D\Delta p(M)$ , then by definition  $R \cap (M \setminus \{m\}) \neq \phi$  and hence  $R \cap M \neq \phi$ 

**Corollary 3.10**  $D\Delta p(M) \subseteq cl\Delta p(M)$ , M is any subset of Z.

Proof. Straightforward.

**Theorem 3.11** If M be an arbitrary subset of Z then  $cl\Delta p(M) = M \cup D\Delta p(M)$ .

*Proof.* Let  $m \in cl\Delta p(M)$ .Let  $m \notin M$  and  $R \in \tau\Delta p$  with  $m \in R$ .Then  $R \cap (M \setminus \{m\}) \neq \phi$ .Hence  $m \in D\Delta p(M)$ , and therefore  $cl\Delta p(M) \subseteq M \cup D\Delta p(M)$ .

Now since  $M \subseteq cl\Delta p(M)$  and by the corollary 3.10 we have  $M \cup D\Delta p(M) \subseteq cl\Delta p(M)$ .

**Lemma 3.12** A subset M of Z is a pre- $\Delta$ open if and only if there exists a  $\Delta$ open set I in Z such that  $M \subseteq I \subseteq cl(M)$ .

*Proof.* Since M is a pre- $\Delta$ open, there exits pre-open sets S and T in Z such that  $M = (S - T) \cup (T - S)$ . Also since S and T are pre-open, there exists open sets J and K in Z such that  $S \subseteq J \subseteq cl(S)$  and  $T \subseteq K \subseteq cl(T)$  and conversely.









INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY EDUCATIONAL RESEARCH ISSN:2277-7881(Print); IMPACT FACTOR: 9.014(2025); IC VALUE: 5.16; ISI VALUE: 2.286 PEER REVIEWED AND REFEREED INTERNATIONAL JOURNAL (Fulfilled Suggests Parametres of UGC by IJMER)

Volume:14, Issue:8(2), August, 2025
Scopus Review ID: A2B96D3ACF3FEA2A
Article Received: Reviewed: Accepted
Publisher: Sucharitha Publication, India

Online Copy of Article Publication Available: www.ijmer.in

Therefore,  $(S-T) \cup (T-S) \subseteq (J-K) \cup (K-J) \subseteq [cl(S)-cl(T)] \cup [cl(T)-cl(S)] \subseteq cl(S-T) \cup cl(T-S) \subseteq cl[(S-T) \cup (T-S)].$ 

Hence the result.

**Corollary 3.13** *The intersection of an open set and a \Deltaopen set is a \Deltaopen.* 

*Proof.* Let K be an open set and I be a  $\Delta$ open set in Z. Also let  $I = (P - Q) \cup (Q - P)$  where P and Q are open sets in Z.

Then,  $K \cap I = K \cap [(P - Q) \cup (Q - P)] = [K \cap (P - Q)] \cup [K \cap (Q - P)] = [(K \cap P) - (K \cap Q)] \cup [(K \cap Q) - (K \cap P)].$ 

Since  $K \cap P$  and  $K \cap Q$  are open sets, the result follows.

**Theorem 3.14** The intersection of an open set and a pre- $\Delta$ open set is a pre- $\Delta$ open.

*Proof.* Let K be an open set and M be a pre- $\Delta$ open set in Z. Then there exists a  $\Delta$ open set I in Z such that  $M \subseteq I \subseteq cl(M)$ . Thus we can write  $K \cap M \subseteq K \cap cl(M) \subseteq cl(K \cap M)$ .

Since  $K \cap I$  is  $\Delta$ open then by the lemma 3.12  $K \cap M$  is pre- $\Delta$ open.

**Theorem 3.15** If M be a subset of Z, a discrete topological space where every open set is a pre- $\Delta$ open set. Then  $D\Delta p(M) = \phi$ 

*Proof.* Let m be an element of M.By the the statement, since every subset of Z is  $\Delta$ open and so pre- $\Delta$ open. The singleton set  $S = \{m\}$  in particular, is a pre- $\Delta$ open. But  $m \in S$  and  $S \cap M = \{m\} \cap M \subseteq \{m\}$ . Hence m is not a pre- $\Delta$ limit point of M and hence  $D\Delta p(M) = \phi$ .

**Theorem 3.16** For every subset M of Z,we have

M is pre- $\Delta$ open if and only if  $D\Delta p(M) \subseteq M$ .

*Proof.* Assume that M is pre- $\Delta$ closed. let  $m \notin M$  that is  $m \in Z \setminus M$ . Since  $Z \setminus M$  is pre- $\Delta$ open,m is not a pre- $\Delta$ limit point of M, that is  $m \notin D\Delta p(M)$ , because  $(Z \setminus M) \cap (M \setminus \{m\}) = \phi$ . Hence  $D\Delta P(M) \subseteq M$ .

**Theorem 3.17** Let M be a subset of Z.If W be a pre- $\Delta$ closed super set of M, then  $D\Delta p(M) \subseteq W$ .

*Proof.* From the proposition 3.8 we have the result that if  $M \subseteq N$ , then  $D\Delta p(M) \subseteq D\Delta p(N)$  and from the theorem 3.16 we have the result  $D\Delta p(M) \subseteq M$ . This two results together implies that  $D\Delta p(M) \subseteq D\Delta p(W) \subseteq W$ .

**Theorem 3.18** Let M be a subset of Z. If a point  $m \in Z$  is a pre- $\Delta$ limit point of M, then m is also a pre- $\Delta$ limit of  $M \setminus \{m\}$ .









INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY EDUCATIONAL RESEARCH ISSN:2277-7881(Print); IMPACT FACTOR: 9.014(2025); IC VALUE: 5.16; ISI VALUE: 2.286 PEER REVIEWED AND REFEREED INTERNATIONAL JOURNAL (Fulfilled Suggests Parameters of UGC by IJMER)

Volume:14, Issue:8(2), August, 2025
Scopus Review ID: A2B96D3ACF3FEA2A
Article Received: Reviewed: Accepted
Publisher: Sucharitha Publication, India
Online Copy of Article Publication Available: www.ijmer.in

*Proof.* Since  $m \in Z$  is a pre- $\Delta$ limit point M, then for all  $R \in \tau \Delta p, m \in R$  implies that  $R \cap (M \setminus \{m\}) \neq \phi$  and hence it is straightforward that m is also a pre- $\Delta$ limit point of  $M \setminus \{m\}$ .

**Theorem 3.19** Every open set is always a pre- $\Delta$ open set.

*Proof.* Since every open set is a pre-open set, it is straightforward that every open set is always a pre-∆open.

**Theorem 3.20** Every  $\triangle$ open set is always a pre- $\triangle$ open set.

*Proof.* Since every  $\Delta$ open set is a pre-open set, it is straightforward that every  $\Delta$ open set is always a pre- $\Delta$ open.

#### References

- 1. Y.B. Jun, S.W. Jeong, H. J. Lee and J. W. Lee, *Applications of pre-open sets*, Applied General Topology, Volume 9, No. 2, 2009, 213-228.
- 2. N.Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- 3. A.S Mashhour, I.A. Hasanien and S.N El-Deeb,  $\alpha$ -continuous and  $\alpha$ -open mappings, Acta Math. Hunger. 41, no. 3-4(1983), 213-218.
- 4. O.Njå stad, On some classes of nearly open sets, Pacific J.Math. 15(1985),961-970.
- 5. T.M Nour and Ahmad Mustafa Jabar, Semi Δ-open sets in topological spaces Internat. Math. volume 66 issue 8-Aug 2020.
- 6. M. Veera Kumar, On  $\Delta$ -open sets in topology, to appear.
- 7. N.V. velico, *H-closed topological spaces*, Amer. Math. Soc. Transl, 78(2)(1968), 103-118.
- 8. T. Noiri and B. Ahemad, A note on semi-open functions, Math. Sem. Notes, Kobe Univ., 10,437-441.
- 9. Munkres J.R., *Topology*, A First Course, Prentice-Hall, Inc.